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( < Preface

This study was part of a continuing effort to design a

missile tracker for one of the Air Force Weapons Laboratory's

laser weapons using modern estimation techniques. An adap-

tive extended Kalman Filter which uses direct infrared

sensor data was synthesized and tested. We hope that this

effort brings AFWL closer to an online realization of such

a filter.

We wish to express our thanks to Captain Z. H. Lewanto-

wicz of AFWL for his advice and cooperation in this project.

A special thanks goes to our advisor Dr. Peter S. Maybeck

for his motivation, advice and time. Finally, an inadequate

thank you to our wives, Pat and Debbie, for their under-

standing and support.
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Abstract

An adaptive Extended Kalman Filter algorithm is designed

to track a distributed (elliptical) source target in a closed
loop tracking problem, using outputs from a forward looking

infrared (FLIR) sensor as measurements. The filter adap-
* tively estimates image intensity, target size and shape,

dynamic driving noise, and translational position changes
due to two effects: actual target motion, and atmospheric

jitter. Atmospheric backgrounds are studied for the effect
of temporal and spatial correlations on filter performance.
A Monte Carlo analysis is conducted to determine filter

*performance for two target scenarios: approximately straight
approach and cross range constant velocity. Good perform-

ance is obtained for the first two trajectories. For the
second trajectory, a one sigma tracking error of .2 pixel
(4 prad) with a signal to noise ratio of 12.5. The filter

adapts well to changes in image intensity, size, and shape.
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AN ADAPTIVE DISTRIBUTED-MEASUREMENT
EXTENDED KALMAN FILTER FOR USE IN A

SHORT RANGE TRACKER

I. Introduction

"...I believe that if the difficult technical.hurdles

facing directed energy technology are surmounted, the
application of this technology to military needs may revo-

lutionize both strategic and tactical warfare." (Ref 1:48)

Dr. Ruth M. Davis, Deputy Under
Secretary of Defense for
Research and Advanced Technology

Background

Since its conception and early development, the laser

has been desired as a weapon because of its unique charac-
°* teristics. Chief among these is the speed of light at

which energy is transmitted from source to destination.

Thus, a laser virtually eliminates time of flight consider-

ations; it is no longer necessary to "lead" the target as
other weapon systems, such as radar guided anti-aircraft

artillery, must. With a laser, the destructive energy

reaches the target essentially instantaneously. Recent

technological advances with high energy lasers have made

the deposition of large amounts of electromagnetic energy

on a small area in short periods of time feasible. This
increase in laser technology, combined with speed of light

transmission, has attracted the attention of high level

military and Department of Defense leaders, such as William

J. Perry, Under Secretary of Defense for Research and Engi-

neering (Ref 2:62), and General Alton D. Slay, Commander of

the Air Force Systems Command (Ref 3:50), as well as Dr.

Ruth B. Davis, Deputy Under Secretary of Defense for

Research and Advanced Technology, whose quote begins this

(paper.

1



Implementation of this desirable weapon system requires

high power for laser pumping, very accurate optics control
(pointing), and very accurate target position estimation.
The last two requirements are dictated by the need to main-

tain the laser beam on a specific part of the target long

enough to destroy the vehicle or one of its critical com-
ponents. "Painting" the entire target with laser energy is

inefficient and would require extremely high amounts of
energy to achieve destruction, and a very accurate pointing

and tracking system makes it unnecessary. The focus of

this research is to investigate a precise target estimation
algorithm for possible use in laser pointing and tracking.

An adaptive extended Kalman filter as a missile tracker
has considerable potential to use more information from the

sensor measurements than a correlation algorithm can.

First, the statistical characteristics of the atmospheric

disturbance of the infrared (IR) wavefront are well known

Cand can be modelled in the extended Kalman filter. Thus,
separation of the atmospheric jitter from true target motion

is possible. This separation is important since the high

energy laser wavefront will not undergo the same atmospheric
distortion as the infrared wavefronts (Ref 4:1). Second,

the extended Kalman filter has the ability to predict future

target motion through an internal target dynamics model. An
adaptive extended Kalman filter can also provide fast detec-

tion of target maneuvering and can estimate uncertain param-

eters such as descriptors of target size and shape. Finally,
as needed, the filter can model the temporal and spatial

correlations of background noise, which would enhance the

separation of atmospheric jitter and target dynamics.

Problem

The Air Force Weapons Laboratory (AFWL) located at

Kirtland Air Force Base, New Mexico, is currently using a

Forward Looking Infrared (FLIR) Sensor in conjunction with

2



a "coarse" correlation tracking algorithm and a fine track
Far Field Intensity Measurement (FFIM) system to provide
accurate target position estimates. Specifically, AFWL is
interested in tracking air-to-air missiles at close ranges
to accuracies better than one milliradian standard devia-

tion. As an alternative to the correlation tracker, an
adaptive extended Kalman filter is developed in this

research. This Kalman filter does not process correlation

tracker outputs but uses FLIR outputs directly.

Research Outline

In 1978, Captain Daniel Mercier completed an initial

thesis which demonstrated the feasibility of using an

extended Kalman filter that uses direct FLIR data for target

* "position estimation (Ref 5). The target he studied was at

long ranges, and could be modelled as a point source of

infrared (IR) radiation. Further, the target could be well

* described dynamically by a zero-mean first order Gauss-

Markov process for position in each direction of the two

planar axes in the FLIR field of view. The target motion

model had a small RMS (root mean square) value resulting in

small excursions for each sample period of the FLIR sensor.

Mercier's analysis consisted of a "truth model" to represent

real world target motion and disturbance environment, and a

filter (tracker) to estimate the target motion from meas-

urements generated from the truth model (see Appendix A for

details).

Mercier's truth model and filter were the starting

point for the research presented in this paper. Initially,

the robustness of Mercier's filter was tested by running

computer simulatiuns with truth model and filter parameter
mismatches. Next, major truth model changes were made to

accommodate the new close-range, air-to-air missile target

scenario, and Mercier's filter was again tested against the

new truth model in computer simulations. The results of

3



( the two sets of simulations indicated the areas of appro-

priate study for filter improvement. This list of improve-
ment areas was prioritized according to their effect on

filter performance. Subsequently, filter changes were made
in a logical sequence, and computer simulations were run to

evaluate new performance capabilities. The result is a
filter which could potentially meet all AFWL requirements.

Having d(escribed the research goals in general terms,

certain assumptions are required to further define and limit

the problem.

Assumptions

FLIR. The FLIR outputs are instantaneous samples of

an array of infrared detectors which are mechanically

scanned by a many facetted mirror through a restricted field

of view. Each minute infrared detector emits electrical

current proportional to the intensity of the infrared pho-

tons entering the face of the detector. A single digitized
output represents a real time, electronic spatial average

of n horizontally scanned detectors. The serial digitized
data can either be stored or displayed on a cathode ray

tube (CRT); each picture element of the CRT is called a

pixel. The horizontal scanning of the detectors proceeds

vertically through the FLIR field of view resulting in an

array (frame) of pixels which is analogous in size (about

500 by 400 elements) and appearance to a normal TV picture.
A new frame of pixels is generated every thirtieth of a

second (30 Hz frame rate). For this study, an 8-by-8 array

of pixels out of each large frame of pixels constitutes a

single measurement array (often called a tracking window).
Restricting the size of the measurement array is primarily

dictated by computational and storage limitations and par-

tially justified by fast measurement rates (to be analyzed

clater). (Ref 5:4-5)
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The digitized FLIR data has notable biases in the
alternating rows of data. The elements of two rows (called

rows A & B) of pixels are generated alternately during each
horizontal scan. With a clear field of view (i.e. FLIR

pointed at blue sky) the average of an A and B row of out-

puts will differ by one or two step counts. This quirk in

the data can be easily compensated so it is not modelled in

the study simulation program. However, this data discrep-

ancy must be accommodated when analyzing real digital data

for spatial and temporal correlations.

Target. The target for current AFWL tests and this

research. is an air-to-air missile. At close ranges, a

missile will appear to have its own distinct geometrical

shape. Previously, Mercier modelled the long range target

as a point source, yielding a bivariate Gaussian intensity

profile with circular, equal intensity contours on the FLIR

image plane. For close range missiles, an extension to

this model to allow the bivariate Gaussian model to have

elliptical, equal intensity contours with specified angular

orientation is used. Real FLIR data supports the use of

this model to approximate closely missile shape in the image

plane (FLIR focal plane).

Air-to-air missiles can exhibit high velocities as

well as high-g turns - a very different target motion from

that which Mercier studied. This will require substantial

alterations to the assumed model of target dynamics.

To track an air-to-air missile, its image must be kept

within the 8-by-8 field of view. For a benign target (very

slow moving), an estimate of only position offset variables

would be needed to provide to the controller as the intens-

ity pattern moves less than half the field of view in one

sample period. However, the speed of a missile enables the

intensity pattern to leave the field of view in one sample

period. As a minimum, target velocity is needed in addition

S



to current position offset to predict subsequent target

position.

Intensity Pattern. The intensity pattern of the mis-

sile's projection on the FLIR focal plane is well modelled

by elliptical, equal intensity contours (Ref 14:15). These

elliptical contours can be described mathematically via a

bivariate Gaussian intensity function.

For this model to be useful, several parameters must
be known: the size of the major and minor axes and the

orientation of principal axes in the image plane. Figure 1

illustrates an intensity function in FLIR coordinates.

I(x,y) y

Imax

peak

Figure 1. Gaussian Bivariate Distribution Intensity
Model, I(x,y)

The equation for this intensity function is

xi i- (x-xpeak) 2 (yypeak)
I (X,y) - I exp 2  2 2

2 rmax L a
x y

(x-x a) (y-ypa
-2reac]()

x y
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where Imax = the maximum target intensity

x,y = the coordinates of any point in the FLIR

focal plane

XpeakYpeak = coordinates locating peak intensity,

max
r = Image dispersion correlation

x,ay = Image dispersions in the x and y direc-
tions respectively

The intensity function would appear as elliptical, equal

intensity contours in the FLIR as shown in Figure 2.

II!

I I I
I I

I I I I

I I I I '

I I I

Figure 2. Target Image in FLIR Field of View

The apparent target intensity function location in the

FLIR field of view consists of several components. Bore-

sight error, FLIR system vibrations and others are assumed
to be negligible so that the intensity function location

can be centered by:
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( Xpeak (t)] (t) + XA (t)](2

LYpeak (t)J YD(t) + YA(t)J

where xDYD = position offsets due to target dynamics

XA,YA = position offsets due to atmospheric jitter

The separation of xD from xA and YD from YA is desirable

for the target tracker, a capability not possible with cor-

relation trackers.

Background Noise. The image background noise which,

along with FLII sensor noise, contaminate the FLIR measure-

ments, is modelled as a spatially and temporally correlated,

Gaussian process. Various physical backgrounds result in
FLIR images with differing spatial and temporal correlation

characteristi~s. Real data analysis and AFWL experience

( has been used to determine appropriate correlation coeffi-
cients for the spatial and temporal correlations.

Closed Looi. This is a closed loop tracking system.
The laser pointing system is assumed to be perfect. That

is, the system catoint exactly where the tracker commands

it within each sample time. This implies that settling time
of the pointing system is less than the data sample period,

the time between discrete samples of the FLIR output.

Previous Investigation

The truth model and filter derived by Mercier will

serve as a beginning for this research. The truth model

target dynamics were modelled as independent, first order

Gauss-Markov processes in the two FLIR component directions,

written mathematically as:

xD(t) - (- I/TD)XD(t) + wl(t) (3)

8



YD(t) = (- 1/TD)YD(t) + w2 (t) (4)

where w1 and w2 are independent white Gaussian noises and

TD is the dynamics correlation time (refer to Appendix A
for a more detailed description of Mercier's work) (Ref 5:

9-10).

The truth model atmospheric disturbances were modelled

as third order Gauss-Markov processes based on studies by

The Analytical Sciences Corporation (TASC) (Ref 6,7). As

part of this study, TASC generated a model for XA, the

atmospheric jitter, in equation (2) as the output of a sys-

tem with a frequency domain transfer function of

XA K(14.14) (659.5)2

3 (s + 14.14)(s + 659.5)2

as driven by a unit strength white Gaussian noise w3 . K in

equation (5) is adjusted to establish the current root mean

square (RMS) value of xA. YA is similarly modelled. (See

Appendix A for conversion of equation (5) to Jordan canoni-

cal form.)

These models resulted in an eight state truth model

with one dynamic state and three atmospheric states for

each direction. The truth model state vector is propagated,

after conversion to equivalent discrete time form, by the

following equation:

S(ti+l) = !T KT(ti) + Ed(ti) (6)

where 2,(ti+l) , _X(ti i = state vector at times ti+1 and

respectively

Ed(ti) discrete noise term

= constant state transition matrix (Ref 5:15)

(The truth model target intensity function is converted into

measurements by the following relationship:
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£kltiJ A X J f max 2a2~- [(X_ ea
P i-jth 2c2  peki

pixel

+ (YYpeak(i))2]1 dxdy + nkl(ti) + fkl(ti)

(7)

where zkl(ti) = output of the i-jth pixel at time t

Ap = area of a pixel

x,y = coordinates of any point in the pixel

x peak(ti),= coordinates of the center of the apparent

Ypeak(ti) intensity distribution with respect to the
center of the 8-by-8 FLIR field of view
at time ti

Imax = maximum target intensity

Sg = dispersion of the Gaussian intensity

function

n (ti )= background noise term for the i-jth pixel

f k(t i) = FLIR noise term for the i-jth pixel

(Ref 4:17)

The filter derived by Mercier had four states, one
state for target dynamics and one state for atmospheric
jitter in each direction. Both target dynamics and atmos-
pheric jitter were modelled as first order Gauss-Markov
processes driven by white Gaussian noise as follows

%(t) = - XD(t) + w1 (t) (8)

'A(t) = -?AxA(t) + w2 (t) (9)
A A

10



where T = correlation time of target dynamics

W(t), w2(t) = independent white Gaussian noise
processes

TA = correlation time of atmospheric jitter, 1/14.14

Analogous equations were used for yD(t) and YA(t) (Ref 5:19).
Equation (9) is a reasonable approximation of equation (5)

in view of the discrepancy of the break frequencies and the

greater importance of the lower frequency characteristics.

After deriving the state transition matrix, 'IF(t,ti), and

2Fd(ti), the discretized noise strength matrix, the filter'1I states and covariance matrix are propagated using standard

extended Kalman filter forms (see Appendix A). Mercier

used the following initial conditions for his filter:

0 a D 0 0 0

0 00 200 0 02 0  0

0 0 0 0 2 A

0

where P(t o) = initial covariance estimate

a 2 = initial estimate of dynamics variance

a 2 = initial estimate of variance of atmosphericA0  jitter

The measurement update of Mercier's extended Kalman

filter is more unique and noteworthy. First of all, for

the design of the filter the measurements (64 pixel outputs)

are assumed to be a nonlinear function of the filter states

plus noise as follows:

&(t ) = h(xF (ti), ti ) + v(t i ) (11)

where h represents the effect of the intensity spread func-

tion given in (1). This equation results in the following

11



• q_ . -T- "  -

( measurement update equations in standard extended Kalman
filter form:

K(ti ) = P(ti- HT(ti)[H(ti) P(ti- H (ti + R(ti)]-

(12)

1(ti+ ) =-(ti + K(t i) z(ti) - h(-(ti ti ) ) (13)

SP(+) - 1K(ti) _(t i ) P (ti- (14)

rh -(xt)where H(ti) = (15)
1 ax

x = x(ti-)

However, equation (12) would require the inversion of a 64-by-64 matrix. To avoid this, the inverse covariance form
of the update cycle was used (Ref 8:238-241) which requires
only two 4-by-4 matrix inversions:

P (. ) = R1 (t.) H(ti ) + P_- (ti -)] (16)

i+ =x(ti- )+P (t i
+ )HT ( )t i )-h ( t i - ) t i )

(17)

Truth Model Changes

Capt. Mercier's truth model was modified in several
ways to accommodate this research. One change was incor-
porated to simulate an air-to-air missile flight path.
This flight path was programmed by adding a deterministic
input to the state equation.

x(ti+l) - x(ti) + Bu(t.) (18)

where B is a constant input matrix and u(ti) is an equiva-
lent discrete time input function depicting the trajectory.

12 1 
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To simulate the measurements taken from the FLIR image

plane, the truth model was modified to use position and
velocity of the missile to orient an ellipsoid in 3D space.

Assuming the missile velocity vector is colinear with the

major axis of the ellipsoid, the major axis of the ellipsoid

is projected onto the FLIR image plane. This projection and

the minor axis of the ellipsoid are then used as semi-major

and semi-minor axes of the elliptical equal intensity con-
tours.

Mercier modelled the disturbances in the measurements

due to the background and FLIR (represented by n k(t) and

fki(t) in equation (7)) as spatially uncorrelated, white

Gaussian noises. However, most FLIR measurements exhibit

both spatial and temporal relationships depending on the

background being observed. The spatial background is easily

handled by generating spatially correlated noise using a

measurement noise strength matrix with appropriate cross

* correlation terms (off-diagonal) filled. The modelling of

the temporal relationship of these noises is much more com-

plicated. The model chosen was to represent the time his-

tory of the noise for each pixel as the output of a first

order lag system (yielding exponentially time-correlated

output) driven by spatially correlated noise. Thus, 64 new

states were added to the truth model to accomplish the sim-

ulation of this effect.

f
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II. Truth Model Development

Introduction

The truth model, a mathematical representation of the

real world system to be evaluated, is developed with those

characteristics needed to model the close range air-to-air

missile problem accurately. Starting with the previous

truth model as described in Chapter I and Appendix A, the
truth model simulation package is supplemented with several

large modelling changes needed to account for the change in
the target scenarios. The changes incorporated are the
addition of spatial and temporal correlations to the FLIR
background noise, the portrayal of the target as an intens-

ity pattern with elliptical constant intensity contours,

the motion of air-to-air missile at close ranges, and the

effects of changing missile image size and shape with vary-

ing range in a fixed field of view.

As an alternative to the development of a truth model,
the use of an AFWL-supplied routine called REFERENCING is
discussed. This routine is capable of reading actual site

test data from tape. This software package has several
capabilities and has considerable potential as a future

analysis tool.

Spatially Correlated Background Noise

The modelling of spatial correlations in the background
noise is conceptually easy but laborious in implementation.

Before the mechanics for creating spatially correlated back-

ground noise are presented, the need for this modelling is
discussed.

The existence of spatial correlations in the background

of the FLIR data has been observed by AFWL personnel and can
be seen in real data analysis. Captain Lewantowicz of the

AFWL has recommuended spatial correlations for distances up

to 40 microradians (prad) based on his experience (Ref 9).

14



Forty microradians is approximately equivalent to two pixels

in the scale used in this research.

Evaluation of real data, which is explained in detail

in Appendix B along with tables and results, further demon-

strates that spatial correlations exist in the background
of the FLIR field of view. The data analyzed was actual

digital FLIR values taken while tracking an approaching
air-to-air missile. The background for the test started as

clear sky and changed to ground clutter when the missile's

motion carried it below the horizon. The data values ana-

lyzed were the sum of one, four, or sixteen pixels (i.e.

from individual pixels, 2-by-2 arrays, or 4-by-4 arrays) as

needed to maintain the target image in the limited field of
the data matrix. The results of the analysis, which are
found in Tables B-I through B-IV of Appendix B, are sum-
marized here. The correlation coefficients between adjacent

pixels (first neighbor) in the horizontal direction aver-
aged 0.325 (the first eight entries of Table B-I) for values
which represented a single pixel's output. The horizontal
coefficients of values representing the sum of four or

sixteen pixels (the last six entries of Table B-I) averaged

0.25 - slightly higher than expected because of the large
distance which this spatial correlation represents. Such

pixel summations were done near the end of the missile's
flight when the missile had gone below the local horizon.

Thus, the higher than expected correlations of the multiple

pixel values may have been due to a change of physical back-

ground, a background with more structure.

The computation of vertical, first neighbor coeffi-

cients was complicated by the bias in the average of alter-

nating rows (called A and B) of data as originally discussed

in Chapter I. In fact, as can be seen in the first six

entries of Table B-III, the correlation coefficients com-
puted when comparing A and B values are primarily negative.

When A and B values are added together and then correlated,
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as occurs in the last five entries of Table B-III, the
coefficients were positive and average 0.355.

Similarly, correlation coefficients between a pixel and

the pixel two away (considering any three pixels in a row,

the first and third are compared) in the vertical and hori-
zontal directions are computed from real data (Appendix B,
Tables B-II and B-IV). Horizontally, the data was unexpec-

tedly uncorrelated except when four or more pixels were

added. This may be due in part to the character of the

background which was clear sky when single pixel values

were used, as in the first eight entries of Table B-II. In

the vertical direction when four and sixteen pixel sums,
' jwhich adds together A and B values, were correlated, the

coefficients (the last five entries of Table B-IV) averaged
0.334.

Thus, the real data analysis of single pixels substan-

tiated the existence of the spatial nature of the background

of FLIR data, but the correlations were not found to be as

extensive as expected due probably to the sky background.
Other than the last segment of this test run, all available
data sources had clear sky backgrounds. Consequently, the

spatial contents of other backgrounds were not studied.

Another effect possibly contributing to the horizontal
correlations was the horizontal sweeping of the detectors.

This effect was not noticeable in the data analysis because
the A and B row effects did not allow a good comparison of

vertical and horizontal coefficients. More methodical data
analysis of known backgrounds is needed to establish the

horizontal contribution of this effect and to establish the

range of reasonable correlations.

The generation of spatially correlated white Gaussian

noises is accomplished by allowing nonzero cross correla-

tions between the measurement noises vj(ti) in the following

equation.

16



z (t i ) = h(x(t i ),t i ) + v (t i ) (19)

The components of v(ti), which is of dimension 64, are no
longer independent as in the original truth model but are

spatially correlated. The noise covariance matrix is then
no longer diagonal but has the general form

' E{v(t i ) v
T (tj) =R 6i

(20)01 rl,2ala2  rl,3a 3  ... rl,64ala64
22r2a r aa r a C r a a

2,1 2 12,3 2 3 . 2,64 2c64

r3 ,1a3a I  r3 ,203o2  03 ... r3 ,64 3a64

' 2

r 4 a 4 a1 r a a r a a a2
64,164a 1r64,2 64 2 64,3 64 3 . 64

where R = 64-by-64 measurement noise covariance matrix

rkl = correlation coefficient relating noise com-

ponents vk and v, at a given time ti

v is assumed stationary so R is constant for a given back-

ground; it would be changed to reflect a significant change

in the physical background. The correlation coefficient is

defined statistically for zero mean random variables as:

r E{vk(ti)vl(ti) } E{vk(ti)vl(ti))
kkl 4Ev2 (ti) 2 =

0 l (21)
S i }E{v (ti) }

From the above equation, it can be seen that rkl = rlk since

ak' Y1, Vk, and v1 are all scalars and that rkk = 1. These

facts and the fact that the variances of the background

noises are assumed to have the same strength ( = a
2 2 srnt 0a4 a OR) yields a simplified noise covariance matrix:

17
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1 rl,2  r1 ,3  ... r1,64

r 1 . r2

R= v 1 ,3  r2 ,3  1 '" r3 ,6 4  (22)

r1,64  r2 64 r3,64  1

At this point the relationship between models for corre-

lated and uncorrelated spatial backgrounds is most readily

understood. For uncorrelated Gaussian noises, rkl in (22)

equal zero. However, if the noises are spatially correlated,

the noise in pixel k is correlated due to its physical

proximity to pixel 1, then some or all of rk,l in (22) are

nonzero.
Having explained what is meant by spatially correlated

noise, the next step is to determine the amount of spatial

correlation that exists in actual data and then to reflect

this in R. AFWL inputs and real data analysis have shown

that the physical limit of such correlations are one or two

pixels distance (first and second neighbors). If the pixels

in the 8-by-8 measurement array are numbered 1 through 64

starting in the upper left and progressing left to right,

row by row (see Figure 3), and if the pixel noises are

similarly numbered, then the correlation coefficients can

be assigned appropriate values. Shown in Figure 4 are the

nonzero correlation coefficients for pixel k for correla-

tions limited to its first neighbor. The number in the

upper right hand corner is the pixel number with respect to

pixel k. The coefficient in each box is that which relates

the noise in that box with the noise in pixel k. For first

neighbor correlations all coefficients are zero except

those relating pixel k to its eight immediate neighbors.

The real data analysis indicated that the coefficients were

symmetric vertically and horizontally; the four diagonal

18
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 611 62 63 64

Figure 3. Pixel Numbering Scheme

k-9 k-8 k-7

rr rk,k-9 k,k-8 k,k-7

k-1 k k+l

rkk-1  rkk= rkk+1

k+7 k+8 k+9

rk,k+7 rkk+8 rk,k+9

Figure 4. First Neighbor Correlation Coefficients

coefficients were set equal to each other, as were the four

neighbors above, below, and to the sides. Thus, rk,k_9,

rk,k_ ? , rk,k+ 7 , and rk,k+ 9 , shown in Figure 4, were set

equal to .2545 for the first neighbor exponential curve fit

to be discussed subsequently, and rk,k_8, rk,kl, rk,k+l,

and rk,k+8 were set equal to .3800 for the first neighbor

( exponential curve fit. Making similar observations of the

correlation coefficients for all the pixels, the R matrix

can be computed.
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,Similarly, if the spatial correlations are to be

modelled as extending to first and second neighbors, then

the coefficients relating a pixel's noise to that of its

24 closest neighbors are nonzero as shown in Figure 5, and

all others are zero. Making appropriate selections for all

pixels allows R to be computed, but this time it has con-

siderably more nonzero entries. Actual implementation in

the computer simulation software (see Appendix G for com-

puter code listings) of the R formulation is simplified by

the symmetry of the coefficients about the main diagonal

and by the use of recursive loops.

k-18 k-17 k-161  k-15 k-14

r r r r rk,k-18 k,k-17 k,k-16 k,k-15 k,k-14

ck-10 k-9 k-8 k-7 k-6
rk,k-10 rk,k-9 rk,k-8 rk,k-7 rk,k-6

k-2 k-i k k+l k+2

rk,k-2 rk,k-1 rk,k=I  rk,k+l rk,k+2

k+6 k+7 k+8 k+9 k+10

rk,k+6 rk,k+7 rk,k+8 rk,k+9 rk,k+10

k+14 k+15 k+16 k+17 k+18

rk,k+14 rk,k+15 rk,k+16 rk,k+l7 rk,k+18

Figure 5. First and Second Neighbor Correlations

Once R is known, specific spatially correlated reali-

zations of v can be generated by using a Cholesky square

20



root decomposition of R and a Gaussian noise generator with

unit variance. Specifically, v(ti ) can be generated as

.(t i ) = cV% W(ti) (23)

where w(ti) = 64 dimension vector of independent white

noises of unit variance generated by inde-

pendent calls to a Gaussian noise routine,
i.e., E{w(ti)w(tj)1 = a 6

and cVf_ is the Cholesky square root of R as discussed in

Chapter 7 of Reference 10. The Cholesky decomposition pro-

duces a lower triangular matrix such that

c. ) c11,/T = R (24)

The covariance of v as given in (20) is preserved with the

use of this decomposition as follows:

T T c T
E{IV(t.)vT(t.) M= A& w(t.)w (t) /

/E{W(t i)wT (t ~ VE ci 6.

- R 6.. (25)
-1J

The final step in the spatial correlation model is

establishing the appropriate values for the correlations.

The early trial runs and real data analysis provided con-

siderable insight into the formulation of a good model of

the correlation curve. Initial runs were attempted with

high (r values ranging from .95 to .8) first and second

neighbor correlations in R and zero correlations elsewhere,

which is physically an unrealistic trend for the spatial

correlations to follow. This resulted in R being numeric-

Cally ill-conditioned.
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The Cholesky decomposition of R could not be computed

as R is required to have non-negative eigenvalues (10:7-5)
as computed on a fixed word length computer. The Cholesky
decomposition will theoretically work for any symmetric,

positive semidefinite matrix given an infinite word length

computer. Because all sensors have some noise, R should be

positive definite. Thus, special care must be taken in

choosing correlation coefficients that make sense physically
so that R has numerically computable positive eigenvalues.

The real data and the practical experience of Dr. P. S.

Maybeck suggested that the correlation could be modelled

adequately as a decaying exponential. The real data analy-

sis indicated first neighbor correlations of about .3 to .4
and second neighbor correlations of essentially zero.

Remembering that autocorrelations yield unity cnrrelation

coefficients, these three points (1,0; .35,1; .0,2) suggest

an exponential decay or other nonlinear curve fit. The

exponential decay model with correlation distance of one
pixel was chosen because it fit the data for the first

neighbor and was essentially zero for the second neighbor

and beyond. The exponential model also prevented R from

being ill-conditioned. There was an upper limit found for

the first neighbor correlations and for the first and second
neighbor correlations, above which R became ill-conditioned.

For first neighbor correlations this value was about .4, and

for first and second neighbor correlations it was about .5

for the closest neighbor and .3 for the second neighbor.

In summary, the following algorithm can be used to

generate a vector, v(ti), of spatially correlated noises:

(1) Decide on the appropriate curve fit for the spatial

correlations and compute R.

(2) Compute c_.

(3) Generate w(ti), the vector of independent white

noises of unit variance.

(4) Compute v(ti) by premultiplying w(ti) by '_.
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Elliptical Intensity Contour Target

The introduction outlined in a general fashion the

desirability of using elliptical constant intensity contours

to model an air-to-air missile image. There are several
good reasons for doing so. Studying frames of data from

AFWL indicated that for any particular intensity level the

pattern was approximately elliptical and in some cases cir-

cular. This seems to bear out that the atmosphere and

optics tend to smear a well defined image and attenuate the

edges gradually. The diffraction pattern produced by the

image closely approaches a Gaussian intensity function
(Ref 14:15). The use of a bivariate Gaussian intensity func-

tion to simulate this effect maintains the essence of the

observed image properties and mathematical ease of handling.

Capt. Mercier assumed the object to be far enough away

so as to appear as a point source of radiation. Due to the

physics of wave propagation and optics, this yields an

intensity pattern on the FLIR image plane well approximated

by a bivariate Gaussian function with circular equal intens-

ity contours. To simulate closer range targets the point

source assumption was clearly inadequate. This, along with

observed data, motivated the elliptical shape with speci-

fied orientation in the image plane used in this research.

The intensity function used is

I (x,y)

I imax exp_ [ (Xx peak) (yYpeak)]f] [-[(XX peak) (yYpeak) IT

(26)

where the variables are shown in Figure 6; Xpeak and ypeak

locate the peak of the intensity function, and av and apv

are the eigenvalues of the P matrix in the equation above.

(To quantify the image, a pixel dimension of 20 prads is

used. Therefore, an 8 x 8 FOV will be 160 prads wide in
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y (elevation)

v e
- peak x (azimuth)

Figure 6. Image Intensity Characteristics

azimuth and 160 Prads wide in elevation. Because of the
small FOV, angular displacement of the target from the cen-
ter of the FOV is closely approximated by linear displace-
ment on the FLIR image plane. Also, angular velocity
closely approximates image plane linear velocity. Since
the distinction between angular displacement and linear
displacement is negligible, angular measurements were used

in this research.

The missile image was produced in several steps by the

truth model. From the simulated three-dimensional inertial
position and velocity of the missile, the azimuth velocity

(x velocity in Figure 6), elevation velocity (y velocity in
Figure 6) and speed (magnitude of velocity vector in 3-D

space) were computed in pixels/sec. The azimuth velocity
and elevation velocity then define the missile velocity
component perpendicular to the line of sight (LOS). The

ratio of the velocity perpendicular to the LOS and speed is

Cthe cosine of the out of plane angle y. Figure 7 shows the

geometry involved.
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F r Ielevation)

cex (azimuth)

v ISOS y

Figure 7. Image Projection

i = out of plane angle

a = orientation angle in ioge plane

cose tsaz muth velocity (27)

sine -elevation velocity (28)

The missile is assumed to be oriented along its veloc-

ity vector. This is not strictly due to nonzero angle of
attack and side slip angle but the error introduced was

thought to be insignificant for the purposes of this

research.

(
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,With cosy determined, the semimajor axis of the three
dimensional missile is projected onto the image plane. This

projected length becomes av and the radius of the circular

missile IR cross-section is retained as the semiminor axis
magnitude, apv, in the image plane. With these parameters
established, the intensity at any point in the image plane

can be computed. This computation is performed in the
principal axis coordinate system of the image ellipse. The
intensity function then becomes

I(xy) = Ima exp AxAyv [AX vAyvT (29)
vpv

where Axv = (X-Xpeak )cos + (Y-Ypeak)Sin8 (30)

Ayv = (yYpeak)cos - (x-xpak )sine (31)

where the rotation angle 6 between (x,y) and principal axis
coordinates is given in Figures 6 and 7.

The average intensity for any pixel, as measured by the

FLIR, is the integral of the intensity function over the
pixel area divided by the pixel area. To approximate this

integral, the intensity was averaged over sixteen equally
spaced points inside the pixel (i.e. at the centers of a

4-by-4 array of squares in each pixel).

To complete the average intensity measurement simula-

tion, noise due to various FLIR and background sources was

added to each pixel. Finally, the intensity function,

including noise terms, for one of the 64 pixels is

4 4 r2 v -
4m kl j!l Imax vkv CF 2  [ vkAYvj IT

L" pv

C + nlm(ti) (32)
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where the noise term n (ti) can be modelled several differ-
ent ways. Three models were used in this research.

1) Spatially and temporally white Gaussian discrete-time
noise where

E[n(ti)] 0 0 (33)

E[n(ti)nT (P a diagonal matrix)(34)

E(n(ti)nT(tj = 0 i i (35)

2) Spatially correlated, temporally white Gaussian noise
!1 where

E[n(ti)] = 0 (36)

E[n(ti)nT(ti)J = P (P not a diagonal matrix)(37)

En(ti)n (tj) = 0 t i # tj (38)

3) Spatially and temporally correlated Gaussian noise where

EIn(ti)] 0 0 (39)

E[n(ti)nT(ti)] = P (P not a diagonal matrix)(40)

EIn(ti)nT(tj)] P e- t i-tj /TA (41)

TA = correlation time of noise

With zero mean noise some pixels far from the target could

have negative intensity values. This was previously pre-
vented by searching out the minimum value of the intensity
pattern and setting this pixel value arbitrarily to .1. The

(other pixels were adjusted by the same amount to maintain
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the correct image (Ref 5:90). This scaling was retained

for this research. The image produced by the collection of

64 Zlm(ti) is presented to the tracker as the measured data.

Target Dynamics Model

The continuous time dynamic model for the air-to-air

missile used in this truth model simulation was

1 = & (t) (42)

42 = -(t)(43)

with ut) = &(t) (t)]T

In vector form, this equation becomes

S(t)= u(t) (44)

where u(t) is a specified azimuth and elevation velocity

time function used as the input to program a particular

trajectory. Equation (44) has the general solution

4D(t) = -_(t,to)x(to) + _(tT)BD(T)u(T)d (45)

0

where to = initial time

-D(tT) = state transition matrix for missile

dynamics

BD () = input matrix for dynamics

LD (r) = input function for dynamics

The atmospheric disturbance model as described in Ref 5

is a stochastic equation of the form

C (t) + Wt)U(t) (46)
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- 7 -- 1

where 2E(t) = the six atmospheric noise states

FAjt) = atmospheric plant matrix

G(t) = atmospheric noise input matrix

~(t) = vector of white Gaussian noise inputs with

zero mean

Arand EXt)T

Equation (46) has the solution over a sample period starting
at t.

t

~(tt.

The integral term in equation (47) requires a statistical

characterization. Let

1

and
E [Ud(ti)J 0 (49)

f T T (50)

t+

QAd

T (1E Id ti d(tj')J 0 ti t. 51
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Note that Ad is not a function of time: the atmospheric )
disturbances are modelled as stationary processes.

For the truth model to provide XA(ti), realizations of

WAd(ti) are required. This can be accomplished by taking
the Cholesky square root of -Ad and postmultiplying it by
a vector of unit strength white Gaussian noise. Then equa-

tion (47) can be written equivalently as

2(t+ (ti+ tilli (i + c/d t )  (2

where

E [!A (ti) = 0

(53)
E[WA(t)(t jY]= I 6ij

A more detailed development of can be found in Ref 10.

" Augmenting equations (45) and (52) yields the complete
truth model time propagation model as

x(ti+ 1 ) = +(ti+lti)xt i ) + L[C)] d(ti) + (ti)

(54)

where x(ti) - state vector of dynamic and atmospheric

states

ti+l

Jd(t * 1(ti+ 1,T)B(T)dT  (55)

ti

and ud(t i ) is a piecewise constant function (constant
between sample times)

t (56)Rd(ti) (t+ At)
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where

At ti+1 - ti  (57)

Equation (56) is evaluated at the interval midpoint as an

approximation to

&(T)dT + &()A+ (58)

1+1At

B(T)dr - A(ti + At (59)

The matrices of equation (54) are

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 e-aAt 0 0 0 0 0

0 Ate 0 0 0
1_(ti+l1t i = 0 0 1 0 0 e-bAt'1 0 0 0

0 0 0 0 0 le-0 0 0

00 0 0 0 0 e-bAt Ate-bAt

00 0 0 0 0 0 eb't

(60)

The 3 x 3 submatrices in 4_ are identical and propagate the
atmospheric noise states for both azimuth and elevation.
See Appendix A and Ref 5 for further details of these sub-
matrices. E of (54) is specified as
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C t 0

{) AtCoto
0 0

- 0 (61)
0

0

0
o

L See Appendix D for details of the QAd matrix.

Now, all that remains is to define &(t) and A(t). Mis-

sile position and velocity equations were programmed in an

inertial xyz coordinate system. This was done to ease the
. transition from a desired trajectory to simulation equations

representing that trajectory. The truth model then takes

these inertial quantities and computes azimuth velocity and

elevation velocity.

Figure 8 shows the geometry involved in the azimuth

velocity equation. This view is looking down on the earth

surface.

I,

I

I
I

- -x(azimuth)

Figure 8. Azimuth Geometry

Since

i O(t) m tan -1 x1-T) (62)
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S.

then

ci ~ (t) I t ) - x I (t)z I (t) } 63
a(t) =(63)

z I (t) + x(t) 2

yielding an &(t) in rads/sec. The truth model uses a pixel

as the unit of angular displacement rather than radians

(1 pixel = 20 urads). Therefore, &(t) is converted to

pixels/sec by dividing by 20x10 -6 rads/pixel.

Elevation velocity is computed similarly. Figure 9

shows the geometry involved.

y-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 9. Elevation Geometry

where P = range = [x1 (t)2 + YI(t)2 + zi(t)21/2

rh - horizontal range in xi,z I plane
W Ix I ( t ) 2 + Z I W)2131/2

Elevation can be computed using either a sine or tangent

function. The tangent function was chosen as it was a sim-
pler equation to implement using quantities already evalu-

ated.

Since

O(t) = tan 1  - (64)
rh t)

(" then
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IX (t)x C t) + z tlZ(t

~rh M)Y(t) Y- I(t)rht

8(t) (65)

Again this is rads/sec and is converted to pixels/sec as

before in the azimuth velocity equation.

With &(ti +-f) and (ti + t) inserted into equation
(56) the truth model propagation equation is complete.

The trajectories simulated by the above equations were
chosen to exercise and verify several aspects of filter per-

formance. The profile used to evaluate the filter of Ref 5
is shown in Figure 10. The view is looking down toward the

earth surface.

C. I

horizontal
plane

tracker location
xI

Figure 10. Trajectory 1: Approaching Target

The velocities were kept small so as not to leave the FOV

in one sample period. The equations are

(ti) = & e-a (ti )  (66)

(t i ) - 0 (67)

where a is a suitable time constant. This was a simple tra-
jectory that the filter of Ref 5, with no prediction capa-

bility, could track.
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The first trajectory used to test the filter developed

in this research was a constant velocity cross range path.

Figure 11 shows this path.

YI

tracker 0 z
location -*Z

Figure 11. Trajectory 2: Cross Range Target

- The equations are

I= -S50U rn/sec (68)

= -300 rn/sec (69)

S= 0 (70)

X0= 1500 mn (71)

= 500 m (72)

z0= 10,000 m (73)

This path is relatively benign and was designed to check

basic filter performance.

The next trajectory was a constant velocity cross range

path with a 20g pull up at closest approach to tracker posi-

tion. Figure 12 shows this path.
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-4

tracker
location-

LOS

x

xI

Figure 12. Trajectory 3: 20g Turn

Before the pull up the equations are

= -1000 m/sec (74)

= 0 (75)

=0 (76)

X = 4000 m (77)

Yo= 0 (78)

zO  40,000 m (79)

After pull up initiation the velocity equations are

= -1000 cosll.96(t-4)] (80)

1 1000 sin[l.96(t-4)] (81)

zIn0 . (82)

This path was intended to show the ability to track a highly

Q. maneuvering missile.
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Temporally Correlated Background Noise

The analysis of real data for temporal noise correla-
tions, which is described in detail in Appendix C, was
inconclusive except for establishing the existence of such

correlations. The primary problem in arriving at conclusive

results was the lack of real data to analyze with backgrounds

other than clear sky. The results of the work accomplished

(Table C-I) demonstrate a consistent temporal correlation

coefficient from one sample time to the next of about .364

for the clear sky. This value for a time difference of one

thirtieth of a second, while disappointingly low, was not

unexpected considering the back-round, which had essentially

no infrared structure to be correlated in time.

In the absence of guidance from the data analysis, the

formulation of a model for the temporal correlation was

based on past models and ease of implementation. Depending
upon the model chosen, the representation of the temporal

correlations required one or more states for each measure-

ment pixel, a minimum of 64 new states to add to the truth

model. A first order model was chosen because analysis had

not indicated the need for a higher order model and the num-

ber of states would be minimized. The exponential time cor-

relation form was assumed to be an appropriate model which

is easily handled conceptually and often used in temporal
modelling.

The stationary exponentially correlated model of the

relationship between the background noises of a particular

pixel at times t and s incorporates the following statistics:

Efv(t)) = B{v(s)) = '0 (83)

E{v(t)v(s)} = N e - t - s /TN (84)

where aN = the desired variance of the noise

( TN = the correlation time constant of the noise
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The continuous time equation for generating v(t) for a sin-

gle pixel is represented in Figure 13 and written as

(t) - /tN v(t) + wN(t) (85)

where wN is zero mean white Gaussian noise whose variance

kernel must be (Ref 8:178)

E{wW(t)wN4(t+T)} = - 6(T) (86)TN

L--j so that the variance of v(t) is a2

WN~t) fdtVWt

Figure 13. Continuous First Order Noise Generation Model

The equivalent discrete time form of this model (con-

tinuous to discrete time conversions is covered in Ref 8,

pages 170 to 174) is shown in Figure 14 and written as

v(ti+l) = N(ti+1,ti )v(t) + wNd(ti ) (87) V

where

_ Nti+lI,ti) = t-I{[s + =-i} = e(ti+lti)/N (88)

and
E{wNd(t i ) l = 0 (89)

Ef ( a2 ( -0_(iT~l-t )/-rN) (90)
EwNd til N2 1 ei
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in order to generate v(ti) with appropriate statistics.

For computer simulation, the process to generate v(ti+1) is
shown in Figure 15. w(ti) is a zero mean, unit variance,
white discrete-time Gaussian noise generated by a Gaussian

noise generator.

WNd(t i) + v(ti+I)

e-(ti+l-ti)/T N vi~ ea

Figure 14. Discrete First Order Noise Generation Model

i 0 NV e fii+/ NV7-t i Dea

Figure 15. Discrete First Order Noise Generation Model
Driven by Unit Variance Noise

Since the 64 noise states are independent of each-other,
the equations for v(ti+ 1) , a vector of dimension 64, is

easily written as

v(ti+1) = i(t+i,ti)v(ti) + HNd(ti) (91)

where _N(ti+l'ti) is a 64-by-64 diagonal matrix written as:

(O (ti+1 ,ti) - e-(ti+l-ti)/ TN I (92)
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The covariance of 1Nd(ti) is diagonal matrix of dimensions
64 by 64

E i T = = -Cl - 2 (ti+l-ti)/N)
d(ti) t((93)

Since these states are decoupled from the other truth model
states described in (54), the 64 noise states can be aug-

mented as a block onto the end of the original eight state

truth model, yielding a 72 state truth model.

The generation of background noise which is spatially

correlated as well as temporally correlated is accomplished

by allowing the driving noise of the 64 shaping filters to

be correlated. This is simply accomplished by inserting the

appropriate nonzero values in the off-diagonal terms in (93)

above. The modelling and computation of R for spatially

correlated noises is detailed in a preceding section titled

Spatially Correlated Background Noise. This formulation

assumes the separability of the spatial and temporal effects

in the background noise.

The implementation of the temporally correlated back-

ground noises requires appropriate state rearrangement
(index changes) to compensate for the apparent motion of the

background due to target motion. When tracking a target
moving horizontally from left to right, the background will

appear in the FLIR to move with equal velocity in the oppo-

site horizontal direction (right to left). To keep the

simulated background of the target correct, three things must
be done: the target motion for each sample period must be

computed, the temporal noise states must be moved to reflect

the target motion, and those states representing pixels with

new background must be filled with new spatially correlated

noises (not time correlated with previous state values

because the previous history of these pixels is not known).

These three steps make up three subroutines in the simula-

tion software which can be seen in Appendix F. The pixel
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motion taken precisely from the other truth model states isArounded to the nearest integer pixel before the state
rearrangements are performed. The motion was restricted to
integer pixel values to allow the same 8-by-8 array model

to be used at all times easily. The rounded motion value
is a fraction of a pixel in error from the true motion
value. This fraction is stored for one sample period and

added to the next motion value before the rounding process

is executed.. This avoids an accumulation of error due to
the rounding process. This approximation was deemed valid
for target velocities of significant size, thirty or more

pixels per second (or for motionless targets, 0 pixels per

second, when no state transitions are needed).

In summary, a step by step algorithm for the generation

of temporally and spatially correlated noises is as follows.

(1) w, a 64-dimensional vector of zero mean, unit var-

iance, white Gaussian noises is generated.

~ 2) Nd is computed by premultiplying w with j_, the

Cholesky square root of R.

(3) The states v are propagated forward in time by

multiplying by 4_(ti+l,ti) and then adding !Nd"

(4) The pixel motion for the time step is computed to

the nearest pixel and the ignored fractions are

stored.

(5) The states are moved appropriately.

(6) Those states now representing new background are

filled with new noises.

Field Size

The FLIR field of view (FOV) is a fixed angle and in

this research was taken to be 160 Prads wide. Although

arbitrarily chosen, this is close to the values AFWL is

C using. As a vehicle moves toward or away from the FLIR, the
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angle subtended by the image increases or decreases. At

some range the image will fill the FOV. For example, at
10 km a vehicle 1.6 m long will fill the FOV. Clearly,

this is inadequate for tracking air-to-air missiles. Two

alternatives seem readily apparent, a larger FOV or compres-

sing the image to stay within the existing FOV. That is,

combine a 2 x 2 array (4 elements) into one pixel, etc.

Larger FOV seems attractive except that it would
increase the computational burden significantly. Increasing

the FOV from the current 8 x 8 pixel array to, say, 16 x 16

will quadruple the computations required in some parts of

the filter algorithm. When computation time becomes a
large part of the sample period, the assumption that control

outputs occur almost instantaneously with sample time is no

longer valid. This may introduce instability into a system

which otherwise would be stable.

Compressing the image will keep it within the FOV but

at the expense of resolution. However, if the tracking sys-

tem works well, the loss in accuracy may be tolerable. Two

compression simulation approaches were considered: (1) have

the truth model actually compute a 16 x 16 array to present

to the filter for 2:1 compression, or (2) reduce the truth

model sigma's by some compression factor but still present

the filter an 8 x 8 array. Either way would have required

extensive programming while not furthering the main thrust

of this research. Therefore, image dimensions were main-

tained within the FOV to avoid the need to confront the

compression issue.

Although not done here, consideration of FOV compression

or expansion is an area which is a logical extension of this
research.

Referencing
r

REFERENCING, which is a tracking simulation package

supplied by AFWL, was used primarily for analyzing the
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'temporal correlations of the background noise in real data

as described previously. However, REFERENCING has consid-
erable potential to be used as an alternate truth model and

as a more extensive analysis tool.

REFERENCING has two operating modes: one mode uses

real digital target data from magnetic tape and the other
mode generates its own synthetic target data. In either

mode the real target or synthetic target is tracked by one
of six correlation tracking schemes currently being studied

by AFWL (Ref 13:1-2). Starting with a 16-by-16 reference

array containing an edge of the target from an initial data
frame, REFERENCING computes a 16-by-16 (or smaller) matrix
of cross-correlations between the reference array and sub-

matrices of a search matrix in a subsequent data frame.
(The cross correlation array was used in temporal noise
analysis in Appendix C.) The cross correlation matrix is
then utilized by the correlation trackers to compute a pre-

cise target offset between the two frames.

Compared to the truth model generated in this study,
REFERENCING has one serious drawback as a good representa-

tion of the real world. In terms of target size and shape,
and the noise characteristics of the measurements, the real
digital data from tape cannot be surpassed by a software

model of the target and noises. However, because the real
data was taken from the FLIR which was moving to keep the

target centered in its field of view, the target appears
*essentially motionless. Moreover, the true motion (states)

of the target is not discernible from the data tapes. Thus,

the errors committed by any tracking system could not be
computed.

When operated in the synthetic target mode, REFERENCING

is deficient in representing any real target motion. The

synthetic target can be generated in almost any size and

shape with its edges smoothed (Gaussian shape) by a filter;

in terms of target intensity characteristics it is a good
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simulation. The target can then be either segmented (rows
or columns of the target deleted), rotated, or jittered
during each run. However, the target cannot display real
motion. Thus, the target motion is again lacking in real-
ism, and except when the target is jittered there is no
noise in the synthetic target frames.

With help from AFWL, the REFERENCING routine could be
made into an excellent "truth model" using real digital
data. The target motion could be recreated from the time
history of the FLIR pointing angles and any other target
data available (i.e. radar range and velocity) from AFWL.
The true trajectory could not be computed, but an adequate
noise-corrupted representation probably could be achieved.

C
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III. Previous Filter Robustness

Introduction

The robustness of the original filter is investigated

when it is subjected to truth model parameter mismatches
and to major truth model changes. The first group of com-

puter simulations, using the original truth model and fil-

ter, investigated the filter performance when parameter

mismatches existed between the truth model and the filter.1A second group of simulations evaluated the performance of
the original filter when subjected to the new target sce-
nario and background as depicted by major truth model

changes described in Chapter II.

Before discussing the particular computer simulation

*runs, the general simulation scenario will be briefly out-

lined. Monte Carlo simulations were performed on a CDC 6600
using software packages written in FORTRAN IV. Each Monte

Carlo case consisted of 20 five second simulations. Each

of the 20 simulations was started at the same specific

value of 40(0) and Po(.51). The data from the Monte Carlo
runs was later processed and appropriate statistics for the

atmospheric jitter and target state estimate errors were
plotted on graphs. Appendix E discusses in more detail

notable computer simulation considerations such as noise
generation, approximations, and tuning. Appendix F con-

tains copies of the FORTRAN IV software packages used to

perform the Monte Carlo simulation. Appendix G contains a
copy of the software module which computed the simulation

statistics and plotted the data. Appendix H lists the
parameters for cases 1-31 which were performed as part of

the analysis for this chapter. Appendices I and J contain

the plots which display the detailed results of the simula-

tions contained in this chapter; major results, trends, and

discussions will be presented in the chapter itself.

II
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(Sensitivity to Parameter Mismatches

The performance of the previously designed filter was

evaluated by inputting contrasting parameters for the filter

and truth models. Two preliminary baseline cases were run.

Case 1 was run at a signal to noise ratio of 20 (S/N=Imax/aN)
and served as a comparison to previously reported results

L. (Ref 5). Case 2 was run as a baseline for cases where

S/N=10. With a nominal set of parameters, Case 2 serves a

performance standard for the other runs. Cases 3 through 12
duplicate case 2 except one parameter in the truth model was

changed in each case. Five areas of sensitivity were exam-

ined by giving the truth model high and low values of a

parameter while the filter was given the nominal value of

the parameter. The areas of interest were target dynamics

correlation time, target intensity, target size, the root
mean square (rms) value of background noise, and the ratio

of the target dynamics rms value to the atmospheric jitter

rms value.

Case 1, whose input parameters can be found in Appendix

H and resulting plots can be found in Appendix I, was run

to check out the inherited software packages through com-

parison to Case 1 conducted by Captain Mercier (Ref 5:47).
Both cases were run at a signal to noise (S/N) ratio of 20,

and they agreed very closely in final results (see Appendix

I and Ref 5;96 to 98). Mercier's Case 1 was not duplicated

exactly due probably to a difference in the seeds for the

random number generator. However, the variances of the real

error and of the filter estimated error agreed very closely.

Case 2, which was conducted at a signal to noise ratio

of 10, serves as a baseline for comparison for the rest of

the mismatch cases. Case 2 was executed with all the nomi-

nal parameters, no mismatched parameters. Table I summa-

rizes the results of case 2 - the units are pixels for the

average mean absolute error and for the average standard
deviation. Because all the errors tend to be zero mean,
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TABLE I

Baseline for Cases 3-18z Case 2 Results

x y

Average Standard Deviation

Atmospheric Jitter
Actual .55 .58
Filter-Indicated .58 .58

Target Position
Actual .56 .58
Filter-Indicated .58 .58

Average Absolute Error

Atmospheric Jitter .07 .08

Target Position .10 .12

the average mean absolute error proved to be more meaning-
ful and is presented in the tables to follow. Each value

shown represents the average of the value over the five

second simulation period. Figures 16, 17, and 18 are three

of the plots resulting from case 2. The three plots display

statistics for the target dynamics in the x direction.

Similar plots were made for the x-direction atmospheric jit-

ter, the y-direction target dynamics, and the y-direction
atmospheric jitter; they can be seen in Appendix I. Figure

16 demonstrates the true error standard deviation (a) con-

vergence of the target dynamics estimate. The true error

standard deviation (a) is plotted as a function of the num-
ber of runs to demonstrate the convergence which occurs

when 20 simulations are run. Figure 17 is a very effective

tool for tuning analysis as it displays the true error stan-
dard deviation (the noisy curve) as well as the filter-

indicated error standard deviation (the more consistent

curve), good tuning being achieved typically when these

agree. Figure 18 displays the mean true target position

(error for the 20 Monte Carlo runs and the one sigma envelope

of the errors for performance analysis.
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The first area of interest for studying filter robust-

ness was variations in target dynamics. The nominal value

for TD in equations (3) and (4) was set at 1 sec. For case
3 the filter assumed T = 1, but the truth model was based

on TD = 0.2. This can be interpreted as the target exhibit-

ing higher frequency motion (more jittery) than the filter

assumes. For case 4, the truth model is based on T= 5, a

slower, more time-correlated motion than the filter expects.
The results for both cases are shown in Table II and a lim-

ited set of their plots can be seen in Appendix I. The fil-

ter performance for both cases is very acceptable. However,

the results have little meaning in terms of the air-to-air
missile scenario because the truth model's target motion

equation for these cases is extremely benign.

Cases 5 and 6 test the filter's response to mismatches

in maximum target intensity. The nominal maximum target

intensity (Imax) measure of 10 (intensity units, the exact

units are irrelevant to the purpose of this as long as

appropriate ratios are maintained) was used by the filter

with the rms value of the background noise set at 1 (intens-

ity unit). For case 5 the truth model is given max =;

the real FLIR images show a target image that is very much

masked by the noise while the filter thinks that the target

image should be readily distinguishable. The truth model

for case 6 has Imax = 20. Now the target intensity is

greater than the filter model assumes. The performance of

the filter in both cases is not acceptable as can be seen

in Table III and their plots in Appendix I. While the poor

performance of case 5 is hardly surprising (such a low S/N

can cause poor performance with or without a mismatch), the

fact that case 6 exhibited similar results is very interest-

ing. The filter appears to have difficulty because it is

searching for the wrong shape of intensity profile caused by

the mismodelled Imax * These results should generally be

( applicable to the close range air-to-air missile problem

because both scenarios share the Gaussian intensity model.
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~TABLE II

Target Dynamics Mismatch -Case 3: Low TDT and Case 4: High TDT Results

Case 3 Case 4
TDT = .2 TDT =5
x y x y

Average Standard Deviation
Atmospheric Jitter

Actual .65 .65 .48 .45
Filter-Indicated .58 .58 .58 .58

Target Position
Actual .65 .68 .45 .42
Filter-Indicated .58 .58 .58 .58

Average Mean Absolute Error
Atmospheric Jitter .10 .12 .10 .07
Target Position .11 .11 .11 .09

The third set of mismatches that were studied dealt
with target size. The nominal, filter, value for the target
size was three pixels (ag = 3). In case 7 the truth model
had the taiget size set at 1 pixel (ag = 1); the real target
is much smaller than the target the filter is trying to
identify. Consequently, the real image randomly walks in

the large target envelope that the filter is searching for,
with the result of poor performance, as can be seen in
Table IV and the plots in Appendix I. The filter performs
acceptably in case 8, in which ag = 5 for the truth model.
The filter appears to pin down the center of the target much

better if the real image is larger than the assumed filter
image size, as can be seen in Table IV. These results are
very meaningful for the close range target where the real
image size may be not only mismatched but also changing in

size and shape.

Mismatches in the background noise were studied in
cases 9 and 10. The nominal value for the signal to noise
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TABLE III

Cs5 Target Intensity Mismatch
Case 5: Low Imax and Case 6: High Imax Results

Case 5 Case 6
1 =1 1 20max max
x y x y

Average Standard Deviation

Atmospheric Jitter
Actual 1.7 1.60 1.5 1.5
Filter-Indicated .60 .60 .58 .58

Target Position
Actual 3.5 4.0 .70 .70
Filter-Indicated .65 .65 .58 .58

Average Absolute Error

Atmospheric Jitter .20 .40 .25 .25

Target Position .20 .10 .10 .20

ratio (S/N I max/ N) was 10, as modelled in the filter.
For case 9 the truth model S/N was 1 (the variance of the

background noise is 10 instead of 1 and Ima equals 10 for

both filter and truth model). This case is very similar
to case 5; the filter is searching for a prominent target
against low background noise but the real target is actually

surrounded by background noise of equal intensity. In case
10, the truth model has a S/N = 20 so that the variance of
the background noise is 0.5. Case 9 resulted in terrible
filter performance (Table V) for reasons similar to those

of the poor performance exhibited in case 5. For both
cases, the real measurements in both portray a target image

effectively hidden among the noise. This is probably the
major cause of the poor performance in both cases rather
than the mismatches which existed. A similar analogy does

not exist between cases 6 and 10. Case 10 exhibited very
good filter perforipance which is understandable when inter-

preted physically. Both the truth model and filter in case

10 have 1max - 10. The mismatch is that the S/N=10 for the
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A TABLE IV

Target Size Mismatches -

Case 7: a T = 1 and Case 8: gT = 5 Results

Case 7 Case 8
GgT gT  5
x y x y

Average Standard Deviation

Atmospheric Jitter
Actual 1.5 1.5 .63 .62
Filter-Indicated .58 .58 .58 .58

Target Position
Actual 3.0 3.0 .65 .65
Filter-Indicated .61 .62 .58 .58

Average Absolute Error

Atmospheric Jitter .25 .4 .10 .12
Target Position .5 1.5 .15 .10

C filter results in the variance of the noise being 1 whereas

the variance of the noise in the truth model is 0.5 (S/N=20).

Simply, the assumed target intensity shape is correct
(instead of erroneous as in case 6) while the background

noise is actually less than the filter assumes, and it tracks
the target very well.

The final mismatch runs investigated the ratio of rms

value of the target motion to rms value of the atmospheric
jitter. These values are assumed to be equal for the nominal

case (aD/cA = 1). In case 11, the rms value of the target

motion was set to a fifth of the rms value of atmospheric

jitter (aD/aA = .2). Physically interpreted, the real tar-

get motion is much less in magnitude than the filter is

searching for. So the filter over estimates the errors,
as can be seen in Table VI. In case 14 the real target has

considerably more motion (aD/aA = 5) than the filter is pro-

grammed to expect, resulting in unacceptable filter perform-
ance shown again in Table VI and Appendix I. The results
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TABLE V

"* Background Noise Mismatch -
Case 9: S/N = 1 and Case 0: SN = 20 Results

Case 9 Case 10
S/N 1 SIN = 20

x y x y

Average Standard Deviation

Atmospheric Jitter
Actual 8.0 8.1 .57 .56
Filter-Indicated .63 .63 .58 .58

Target Position
Actual 3.8 3.9 .56 .53
Filter-Indicated .77 .78 .58 .58

Average Absolute Error

Atmospheric Jitter 1.5 1.5 .12 .10

Target Position .5 .6 .12 .12

of these cases again have little meaning in terms of the

air-to-air missile problem. The truth model's target motion

and the filter's target motion model in these cases are

totally unrealistic in terms of representing an air-to-air

missile. The truth model's target motion has already been

redefined in Chapter II. An appropriate change in the

filter's target dynamics model is therefore motivated.

Sensitivity to New Truth Model

The previously formulated filter was also evaluated as

it was subjected to the major truth model changes described

in Chapter II. First, the filter was tested against targets

with differing aspect ratios (AR = image length/image width

= av/upv as defined in Chapter II) as simulated by the truth

model. Next, filter performance was evaluated when the

background noise was spatially correlated. The truth model

was then changed to allow target motion, and the filter

performance tested in terms of the new motion. Temporally

55



( TABLE VI
Ratio of Atmospheric Jitter to Target Dynamics Mismatch -

Case 11: aD/A = .2 and Case 12: cD//A = 5 Results

Case 11 Case 12

x y x y

Average Standard Deviation

Atmospheric Jitter
Actual .43 .41 1.7 1.5
Filter-Indicated .58 .58 .58 .58

Target Position
Actual .38 .37 2.5 2.8
Filter-Indicated .58 .58 .59 .60

Average Absolute Error

Atmospheric Jitter .08 .08 .35 .4

Target Position .10 .07 .4 .5

correlated background noise was the last addition to the

truth model, and, subsequently, the filter performance was
evaluated for various target scenarios with a variety of

temporal and spatial background noises. Each truth model

change as formulated in Chapter II was aimed at a more
realistic representation of the problem. The filter per-
formance in light of these changes to the truth model was

not expected to be good because the filter had not been
designed to track the type of target which the changes were

attempting to create. The goal of these runs was to obtain

a prioritized list of those characteristics of the new tar-
get scenario which caused the most problems.

The filter's ability to track a target with an aspect

ratio (AR) greater than one was first tested. This was

accomplished by a software change to replace the circular

constant intensity contour target by a target (also bivari-

ate Gaussian) with variable minor Ca pv) and major ( pv.AR)

Qaxes' magnitudes; target dynamics and atmospheric Jitter
state equations in the truth model remained as originally
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formulated. For the cases tested, the major axis was

aligned with the x-axis. Cases 13, 14, and 15 were run

with a equal to 1 and AR equal to 2, 5, and 10, respec-

tively. The results of these cases are shown in Table VII.

(The plots and input parameters for the truth model and

filter for each case are found in Appendices H and I,

respectively.) As expected in all cases, the y-axis filter

performance was very good because the target size did not

change in that direction. In the x-axis direction, the

filter performance did not degrade significantly as the

target increased in aspect ratio. These results show small
but definite errors which would be amplified by other com-

plicating factors such as feedback, target rotation, target

motion, and variations in target size. Other factors and

simulations need to be considered before judging the role of
AR.

The truth model changes, discussed in Chapter II, for

creating spatially correlated background noise were imple-

mented, and the filter was tested against it. Again, the

state equations were not changed, and the circular constant

intensity contour target was used (AR = 1). First and sec-

ond spatial correlations using the exponential model were
used. The 24 correlation coefficients of any one pixel

have only five different values due to the symmetry of the

correlations. For case 16 for example, rk,k+l rk,k+9,

rk,k+2 , rk,k+10 , and rk,k+18 shown in Figure 5 were set to

.368, .243, .135, .105, and .059, respectively, as generated

by an exponential correlation model. The other 19 coeffi-

cients were set equal to one of these values as dictated by

the symmetry. Cases 17 and 18 were run with spatial corre-

lations of .497, .372, .247, .209, and .138 at S/N and Imax
equal to 10 and 1, respectively. These coefficients repre-

sent the upper limit of values which could be used without

numerical problems in R (see Chapter II).
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TABLE VII

Elliptical Target Intensity Contours in the Truth Model
Cases 13, 14, and 15 Results

Case 13 Case 14 Case 15
AR = 2 AR = 5 AR = 10
x y x y x y

Average Standard Deviation

Atmospheric Jitter
Actual .65 .58 .82 .58 .85 .56
Filter-Indicated .58 .58 .58 .58 .58 .58

Target Position
Actual .60 .55 .80 .58 .90 .54
Filter-Indicated .58 .58 .58 .58 .58 .58

Average Absolute Error

Atmospheric Jitter .15 .10 .20 .12 .20 .12
Target Position .10 .10 .15 .10 .15 .10

Note: the baseline, Case 2, for comparison
is summarized in Table I.

Cases 16, 17, and 18 can be interpreted physically as

tracking a nearly stationary target against a spatially
correlated background while the filter assumes that the

background noise is spatially white. The results of these
three cases, which are displayed in Table VIII, showed
acceptable performance except for case 18 when S/N = 1. The

filter performance in cases 16 and 17 was almost identical

to case 2; the spatially correlated background noise caused
no perceived degradation. Case 18's poor performance was
probably caused equally by the low signal to noise ratio

and the spatial correlations in the background noise. This

was partially confirmed by comparison to case 10 of Capt.
Mercier's thesis (Ref 5:124-125) which shows a true error
variance for the atmospheric jitter and target position of

1.0 and 1.25, respectively (even here the filter underesti-

mated its own errors). This case corresponds to case 18
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TABLE VIII

Spatially Correlated Background Noise in the Truth Model
Cases 16, 17, and 18 Results

Case 16 Case 17 Case 18
S/N = 10 S/N = 10 S/N = 1
Low Cor- High Cor- High Cor-
relations relations relations
x y x y x y

Average Standard Deviation

Atmospheric Jitter
Actual .58 .57 .58 .58 1.5 1.55
Filter-Indicated .58 .58 .58 .58 .85 .85

Target Position

Actual .55 .56 .58 .56 2.5 2.2
Filter-Indicated .58 .58 .58 .58 .65 .65

Average Absolute Error
Atmospheric Jitter .13 .12 .12 .10 .30 .30

Target Position .08 .10 .08 .11 .40 .50

Note: the baseline, Case 2, for comparison
is summarized in Table I.

here, but with no spatial and temporal correlation in the

truth model background noise, i.e. with no filter mismatch.

The next test for the filter was the addition of motion
to the truth model (refer to Chapter II for description of

target motion formulation). The elliptical target and spa-
tial background noise were not used for these test cases.

One change was made to the filter to allow it to try to

track a moving target. The original filter was open loop

in design; it was assumed that the computed offsets were not

zeroed out by the system's control mechanism. Thus, the

filter relied on the zero mean characteristic of the origi-

nal truth model's dynamics to keep the target in the FLIR

field of view. Without implementing feedback, the filter

would lose any moving target in one or two sample periods
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depending on the magnitude of the motion. (For more detailed

analysis see Chapter IV.) Thus, the filter was changed to

reflect control system zeroing of the computed target motion

offsets for each sample period. The velocities for cases 21
and 22 were 56.4 pixels per second (x = 40 pixels/sec,

y = 40 pixels/sec, initially) and 84.6 pixels per second

(x = 60 pixels/sec, y - 60 pixels/sec, initially), respec-
tively.

Because of the software change to provide system feed-
back, a new baseline case was computed. The parameters and

plots for case 19 can be found in Appendices H and J, respec-
tively. Case 19 was run with a signal to noise ratio of 10

and without target motion (Sc = 0, = 0). The results of
case 19 are summarized in Table IX. The results show the
filter to be slightly out of tune (tuning is discussed more

completely in Appendix E). Tuning was not accomplished

because of time constraints and the small amount the filter

was mistuned. This is partially because of the feedback
change and partially due to a change in two of the nominal

parameters (aDT/aAT = 5 and aAF = .2). Case 19 will be the-

baseline of comparison for cases 20 to 23.

Table IX and subsequent tables in this chapter, a new

analysis value has been added - the number of times in the

20 simulations that the target was lost. If the true target

position ever was more than three times the target size

3-a v) away from the filter computed position, the target
was considered lost. For targets where av is greater than

or equal to 1.5 pixel, this means most of the target image

has loft the field of view. For any size target this cri-
teria means that the true image is so far from the predicted

image that the residuals provide little useful information.

In most cases where the target is lost more than one or two

times, the total number of loss of track is more meaningful

than the statistics that result.
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TABLE IX

Baseline for Cases 20-23
Case 19 Results

(S/N=10)

Case 19

Average Standard Deviation

Atmospheric Jitter
Actual .25 .25
Filter-Indicated .19 .19

Target Position
Actual .40 .40
Filter-Indicated .19 .19

Average Absolute Error

Atmospheric Jitter .09 .08
Target Position .10 .10

Loss of track - 0 times

The filter performance for cases 20, 21, and 22, sum-

marized in Table X, show a trend of increasingly poor per-

formance corresponding to the increasing velocity of the

cases. Case 22 statistics are not shown because the loss of

track problems caused numerical problems serious enough to

interrupt its execution. It is known that loss of track

occurred in all 20 simulations for case 22. The results of

these three cases demonstrate all too well the need for
better filter modelling of the target motion.

The last truth model change was the formulation of a
72 state truth model to allow temporal noise modelling of

*the background noise. The filter performance was analyzed

in cases of various combinations of S/N, temporal correla-

• tions, and spatial correlations. To make sense physically,

temporal and spatial correlations were used together in the

background noise for most cases.

The first two cases, cases 23 and 24, were run at S/N

equal to 10 and 1, respectively, with both spatial and
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TABLE X

Target Motion in the Truth Model
Case 20 and 21 Results

Case 20 Case 21
= 20 P/S = 40 P/S
S= 20 P/S = 40 P/S

x y x y

Average Standard Deviation
Atmospheric Jitter

Actual .26 .28 .22 .23
Filter-Indicated .19 .19 .19 .19

Target Position
Actual .45 .50 8.0 16.0
Filter-Indicated .20 .20 .20 .20

Average Absolute Error

Atmospheric Jitter .12 .14 .11 .15
Target Position .20 .22 7.0 15.0

y Loss of Track 0 times 12 times

Note: 1) Case 22 lost track 20 times.

2) The baseline, Case 19, for
comparison is summarized in
Table IX.

temporal correlations. For each case the spatial correla-

tion coefficients were the same as those used in case 16;
the truth model depicted a motionless target. For the tem-

poral noise TN was chosen (TN = 20 sec) to simulate a .95
correlation between noises over one second of time. This
value of TN is probably a realistic upper limit (worst case)

on the correlations; a correlation of 1 is the theoretical

upper limit. Filter performance in case 23 shown in Table
XI was only slightly worse than that of the baseline, case
19, and acceptable. The performance of case 24 was so bad
that numerical problems halted the simulation software.

CThese two cases reaffirmed past conclusions: at S/N equal
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* TABLE XI

Temporal and Spatial Background Noise in
Truth Model (SN = 10) - Case 23 Results

Case 23

•95 Time Cor.

4 x y

Average Standard Deviation

Atmospheric Jitter
Actual .26 .27
Filter-Indicated .20 .20

Target Position
Actual .50 .49
Filter-Indicated .19 .19

Average Absolute Error

Atmospheric Jitter .09 .08

Target Position .15 .12

Loss of Track 0 times

Note: 1) Case 24 loss of track = 20 times.

2) The baseline, Case 20, for
comparison is summarized in
Table IX.

to 10, no matter what realistic model used, the background

noise has no significant effect on filter performance; at

S/N equal to 1 real tracking problems occur.

A group of cases, simulated with S/N equal to 2, pro-

vided more interesting evaluations of the temporal and spa-

tial background noise correlations effect. A new baseline,
case 25, was computed because of the new S/N. Case 25 was

run without truth model motion and with temporal and spatial

correlations in the background noise deactivated (actually

TN = .01 sec which corresponds to a .03 correlation in one

sample period). Case 25 results are tabulated in Table XII.

While the performance statistics are not good, loss of track

only occurred once, and these values will serve for compari-
son purposes for the cases to follow.
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TABLE XII

Baseline for Cases 26-29: Case 25 Results
(s/N=2)

Case 25
i!x y

Average Standard Deviation
Atmospheric Jitter

Actual .20 .19
Filter-Indicated .19 .19

Target Position
Actual 1.9 1.3
Filter-Indicated .34 .34

Average Absolute Error
Atmospheric Jitter .05 .05

Target Position .40 .30

Loss of Track 1 time

Cases 26, 27, 28, and 29 were run at S/N equal to 2

and various combinations of temporal and spatial background
noise. Case 26 had high temporal correlations (.95 for one

second) and spatial correlations with the same coefficients
as cases 17, 24, and 25. Case 28 ran with no temporal cor-

relations (TN = .01) but again with the same spatial corre-
lations as cases 27 and 28. Case 29 was the reverse of

case 28; no spatial correlations but high temporal correla-
tions were used (.95 for one second). The results for all

cases are shown in Table XIII. Case 26 portrays a target

against a background with considerable spatial and time cor-

related infrared structure. Filter performance was poor

with loss of track resulting in 12 simulations. Case 27 is

the same as case 26 but with less time correlation in the
background structure. Performance was similarly poor.

Case 28 emulates a background that is correlated in space

but not in time; performance, while not acceptable, was very

C close to that of the baseline, case 25. Case 29 shows a

background that is highly time correlated but is not related
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TABLE XIII
Temporal and Spatial Background Noise in the Truth

Model IS/N = 2): Case 26, 27, 28 and 29 Results

Case 26 Case 27
.95 Time Cor. .5 Time Cor.
Spatial Cor. Spatial Cor.

x y x y

Average Standard Deviation

Atmospheric Jitter
Actual .22 .20 .20 .20
Filter-Indicated .19 .19 .19 .19

Target Position
Actual 19.0 12.0 12.0 9.0
Filter-Indicated .34 .34 .34 .34

Average Absolute Error

Atmospheric Jitter .06 .05 .05 .05

Target Position 1.0 1.0 1.0 1.0

Loss of Track 12 times 12 times

Case 28 Case 29
0 Time Cor. .95 Time Cor.

Spatial Cor. No Spatial Cor.

x y x y

Average Standard Deviation

Atmospheric Jitter
Actual .20 .20 .19 .19
Filter-Indicated .19 .19 .19 .19

Target Position
Actual 2.0 1.6 4.0 1.6
Filter-Indicated .34 .34 .34 .34

Average Absolute Error

Atmospheric Jitter .05 .05 .05 .05

Target Position 1.0 1.0 1.0 .50

Loss of Track 1 time 8 times
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spatially (an unrealistic background). Filter performance

is poor but better than that displayed by cases 26 and 27

and worse than the performance of case 28. In summary, at

low S/N temporally and spatially correlated background noise

can significantly hinder filter performance. These cases

suggest that the temporal noise correlations may be more

critical than the spatial noise correlations. This may not

be true in reality, because the spatial correlations were

fairly realistic (see Appendix B) whereas the temporal cor-

relations were worst case and possibly far from reality (see

Appendix C). Target motion will also tend to decrease the

importance of temporal correlations.

The last two cases tested were run with S/N equal to 2

with the target moving. The motion scenario previously

described in this chapter and Chapter II was diagonal up

and to the right with an initial velocity of 28.2 pixels

per second. Case 30 was run without temporal and spatial

C background correlations; case 31 was run with them. The

results are shown in Table XIV. For both cases the combina-

tion of target motion with low S/N resulted in almost equal,

unacceptable filter performance. The cases provided little

new insight to the filter. With motions greater than eight

pixels per sample period which is very easily reached for most

air-to-air missile scenarios, temporal modelling of the back-

ground changes completely in a single sample period.

Major Problem Areas

The results of the computer simulations presented in

tnis chapter have provided considerable insight to the weak-
.ess of the original filter. From the parameter mismatch

--ins the following list of major problem areas in order of

m nrtance resulted:

Low nignal to noise ratio

'argt size mismatch
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TABLE XIV

Temporal and Spatial Background Noise with Target
Motion (io=io=20 pixels/sec) in the Truth Model S/N = 2

Case 30 and 31 Results

Case 30 Case 31
Baseline
0 Time Cor. .95 Time Cor.

No Spatial Cor. Spatial Cor.
x y x y

Average Standard Deviation

Atmospheric Jitter
Actual .19 .19 .19 .19
Filter-Indicated .19 .19 .19 .19

Target Position
Actual 7.0 10.0 10.0 10.0
Filter-Indicated .34 .34 .34 .34

Average Absolute Error

Atmospheric Jitter .08 .05 .06 .08

Target Position 7.0 10.0 6.0 12.0

f Loss of Track 17 times 18 times

3. Target intensity mismatch (very much related to the

low S/N problems)

4. The ratio of rms target dynamics to rms atmospheric

jitter mismatch.

From the new truth model cases another list of significant
, problems are noted as follows (in decreasing order of concern):

1. Target motion

2. Low S/N ratio

3. Target shape and orientation mismatch

4. Temporal and spatial background noise at low S/N

(but at moderate expected S/N levels these effects

were not as significant as others).
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( The various solutions to these problems range from sim-
ple to very complex. The low signal to noise problem has

been noted in many systems dealing with electromagnetic

radiation. It was felt that the scope of this research

should be limited to exclude this major problem area. The
problem areas in this research which appeared significant

and could be addressed within the allotted time period were
" I target motion, target size and shape, and target intensity.

KI The solution bf the target intensity problems will help
solve the S/N ratio problems noted in this chapter. Possi-

ble filter changes to maintain track on a moving target
~cover a large range of models and techniques, both adaptive

and ad hoc, and will encompass much of the rest of this
research. For the problems caused by target size, shape,

and intensity, the apparent solution is real time adaptive

estimation of the target parameters. Adaptive estimation
schemes for estimating these parameters range from such com-

plicated formulations as the solution of the full maximum
likelihood equations to simple approximations and ad hoc

schemes (Ref 16:10). These techniques will be studied in
this research, attempting to achieve a final design with
desirable performance and yet online applicability.
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IV. Filter Requirements

Introduction

Section III was designed to indicate the changes needed
to Capt. Mercier's filter to enable it to track near range

moving targets. Several areas needing attention are as
follows: (1) The filter must have the ability to predict

future (next sample time) position, as the missile can travel
many times the width of the FOV in one sample period. At

10 km a typical missile can travel approximately 80 pixels
per sample period. With an 8 x 8 FOV and no prediction

'1 capability, the target image will depart the FOV, resulting
in loss of track. Therefore, the tracker must have a pre-
dicted position for the next sample time. (2) The filter

must be able to estimate orientation, size and shape of the

image. This is necessary because no a priori estimate of
flight path is possible and also missiles differ in length
and aspect ratio (lengthLdiameter). (3) The filter must

determine the extent to which a particular flight path dif-

fers from the dynamics model in the filter, in other words,
establish (i.e. adaptively estimate) the strength of the

driving noise for its state stochastic process model. Flight

path identification can be viewed as essentially maneuver

detection followed by adjustment of the noise strength to

fit the trajectory, and alternative means of responding to
detected maneuvers should be considered. (4) The filter

must have a good estimate of the maximum intensity of the

image. As the residuals are the key to any parameter iden-

tification technique, a large difference between the filter's

assumed Imax (IF ) and the true Imax will yield residuals

with inaccurate information. Each of the above mentioned

requirements and the basic Kalman filter equations will be

discussed individually in the following paragraphs.

For the filter to predict future position, a current
estimate of velocity is required as a minimum. Using the
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predicted position, the controller was assumed to be able (
C to point without error. Actually, a filter without predic-

tion capability could track a moving target if it did not
leave the FOV in a sample period. However, the pointing

command would still be one sample behind at all times. At
best, without predicting'future position, the tracker would

lag the missile considerably and in many cases lose it

entirely.

The six state filter will be described first and in

some detail. The eight state filter will be presented

briefly showing the differences between the two filters.

Six State Filter

The dynamic model for the six state filter is

-I(t) = YD(t) (94)

iD()= ! ()(95)

where the subscript D stands for dynamics, and

= O (96)T 2
t a 6(t-s) (97)

Equations (94) and (95) above are not strictly correct, as

the tracker orientation is fixed with the LOS which is a
rotating reference frame. However, a sample period of 1/30

second was considered short compared to any time constant
describing missile acceleration. In other words, inertial

equations were considered adequate for one sample period.
To correct the filter model, equations similar to (63) and

(65) in the truth model section, or, at least Coriolir
theorem terms would need to be incorporated. Explicit cor-
rection of the rotating frame effects would only be incor-

Q.. porated if warranted in a performance/computational loading

tradeoff.
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The atmospheric disturbance model for each axis in the
filter is

-1

A ) XA (t) + wA(t) (98)
whr AA

where the subscript A stands for atmospherics, and

= correlation time

E[wA(t)] = 0 (99)1 2
E[wA(t)wA(s)] = A (t-s) (100)

For a detailed explanation of this model see Ref 5 and

* Appendix A.

* Combining the dynamic and atmospheric models yields a

propagation equation upon which to base a Kalman filter of

= F(t) (t) + G (t) (t) (101)

where the subscript F stands for filter, and

F(t) - F = filter plant matrix

(t) = filter state vector

x = azimuth position

x2 = elevation position

x3 = azimuth velocity = Xl

x4 = elevation velocity = k2

x5 = azimuth atmospheric disturbance

x6 = elevation atmospheric disturbance

G(t) - G = 6 x 4 noise distribution matrix

E [!(t)] - 0
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a 2  o D 0

0 0r2  0 0
P 2 2 6 (t-s) (102)

0 0 .A 2

.2o

A

-0 0 0 - -A

2
a = strength of velocity noise

D
2 = variance of atmospheric jitter
A

model output

The velocity noise strength, a2, need not be equal for the

- I azimuth and elevation axes, conceptually. For this research,
( the axis noise strengths were set equal for the nonadaptive

* phases of tracking (acquisition) and allowed to be unequal
during adaptive phases of tracking.

Explicitly, equation (101) is

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 x 0 0 0 0 w

0 0 0 0 0 0 1 0 0 0 w23 + 2 (103)
0 0 00 00 0 x 0 1 0 w

S0 0 0 0 -A D X5  0 0 1 0 w4
TA-1 56 L o o

0 0 000 ~ X6 0 00 1

where w1 through w4 are independent white Gaussian noises.

The filter state and covariance propagation equations that

result from this propagation equation are

+t)7 (104)
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with covariance of

P(t- ) (t OT (t +it +t i+'T 
(105)

ti
The - and + superscripts refer to before and after a meas-

urement update is made. Continuing, the state transition

matrix is

1 0 At 0 0 0

0 1 0 At 0 0

0 0 1 0 0 0
F (106)

0 0 0 1 0 0

0 0 0 0 e -t 0"-A -At
0 0 0 0 0 eT1 e TA

Note that OF is a constant matrix. The integral term in

equation (105) is evaluated and becomes a representation of

the growth in uncertainty due to driving noise since the

last measurement update. This integral, also a constant

denoted as QFd' is

At 3a t At 2 a 2 D

0 D 0 0tD
At2  32  2 2 0

2 2
D 0 Ata, 0 0 0

QFd At 2 D (107)

0 2D o At 2  0 0,D -2At

2(1-e TA)-t

0 0 0 0 00 A) -A

o o o o o 2  'A-
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so the covariance propagation equation becomes
1t- + +-T(18

P(ti+l) = IF(ti)-F + Fd (108)

The above derivation can be verified with any text on Kalman

filtering (Ref 8:171).

Eight State Filter

The six state filter above is, to be sure, not the only

possibility for filter formulation. An eight state filter

including acceleration in both directions would seem to be

appropriate also. For eight states the dynamic model would

be, for example

(109)

= a(110)

AD . (111)

where iD is a vector of zero mean white Gaussian noise.

Another model which allows for shorter time correlation of

the acceleration is

a. a + 1D (112)

where !D is a vector of zero mean white Gaussian noise and

T is the correlation time. This model will give more rapid

variations in a than equation (111) but introduces another

parameter, T, to estimate.

A third possible model for a is

a = -2v+ D (113)

where

v = velocity

SIvx (14
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and !D is a vector of zero mean white Gaussian noise. This

model is more complex and computationally less attractive,

but it forms the basis of a model suggested for enhancing

close range tracking (Ref 17).

Consideration was given to these models and equation

(111) was chosen. Equation (114) is better suited to an

aircraft rather than a missile. Combined with increased

computation load, it seemed less appropriate than the other

models. With adaptive estimation of the driving noise,

equation (111) would give adequate performance in low and

high acceleration cases without the need for equation (112).

Some advantages of the eight state filter are better
characterization of the true acceleration than the previous

(six state) model and better prediction capability. The
price paid for this is longer computation time and more

memory. Other advantages, associated with noninertial

acceleration compensation and maneuver detection, will be

* discussed subsequently.

The statistics of the dynamic driving noise are

E[!D (t)] = 0 (115)

EI~4(t)(sY 2 Lts (116)

where the noise now enters at the jerk (time derivative of

acceleration) level. Again, this model is not entirely cor-

rect either, but is a better approximation than that of the

six state filter. The development of the eight state filter

parallels the development of the six state filter so only

the results will be presented here. The state vector is

x = azimuth position

x2 = elevation position

x3 = azimuth velocity =

X = elevation velocity =x
475
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-X = azimuth acceleration = 3

x6 = elevation acceleration = *4

x7 = azimuth atmospheric disturbance

x8 = elevation atmospheric disturbance

A2

1 0 At 0 lt 0 0 o

0 0t 0
0 10 0 t 0 0

2

0 0 1 0 At 0 0 0

0 0 0 1 0 Ait 0 0

-F 0 0 0 0 1 o 0 0 (117)

0 0 0 0 0 1 0 0
-At

0 0 0 0 0 0 e T A 0
-At

0 00 0 0 0 0 e TA

and

Ait lia2 t 4 yD At 3 a 2

20 0 8 0 6 0 0 0
52 4 2 At 3 o 2

0 ~ 0 - 0 0 0

At 4 c 2  20t A a 2t3  8 Att 2 a 2 6

8 0 D 0 2 0 0 0
At4a 2  At 3 a 2  At2 2

0 8 t 0 3 D t0 2 0 0
3 at o 2  At2 2

6 0 2 0 Atc 2  0 0

0 6D 0 D 0 lita 2 0 0-2At

0 0 0 0 0 0 a2 (le TA 0 -2ht

0 0 0 0 0 0 0 2 (l-e TA

(118)
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The advantages and disadvantages of both six and eight

state formulations were considered and, unless performance
required the eight state filter to be used, the six state

filter would be pursued. Thus, the six state filter above
is the basic formulation. The adaptive estimation of the

2Fd matrix and other modifications of this basic structure
will be discussed later in this section.

Size and Shape Estimation

The second major requirement is to determine the size,

shape, and orientation of the image ellipse. Figure 19

shows possible variables to describe the image. The sub-
scripts v and pv refer to the image plane velocity direction
and perpendicular to that velocity direction, respectively.

-ILOS

*Figure 19. Image Geometry Characteristics

Define

AR =aspect ratio = v (19
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The measurement update for this Kalman filter is so

intimately related to the estimation of av , apv and/or AR

that they will be treated together.

The assumed measurement relation for an Extended Kalman

Filter (EKF) is

z(ti) = h(x(ti )Iti ) + v(t i ) (120)

where

E[v(ti) = 0 (121)

Elv(t.)v (t.)] = R(t)6i (122)

and h is a nonlinear function relating the states to the

measurements. Specifically, for the jth of 64 pixels

., hj ('x(t i  Iti

2 0 1v

pj pi pv

(123)

where

A = area of pixel j, j=l, ... 64

I = (filter estimate of) maximum intensity

Axv , Ayv have similar meaning as in eqns. (30) and
(31), and are measured with respect to the principal

axes of the ellipse in Figure 19.

Ov = (filter estimate of) semimajor axis of ellipse

in Figure 19

Gpv = (filter estimate of) semiminor axis of ellipse

in Figure 19

Equation (123) is evaluated like equation (7) in the truthcmodel section except that instead of averaging evaluations
of the integrand over 16 interior points of each pixel,
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only the midpoint is used. This is done to reduce the com-
putational loading in the filter. Also, since the angle e
in Figure 6 is not available to the filter, it is never

computed. Instead cosO and sinO are estimated from x3
(azimuth velocity) and x4 (elevation velocity) under the
assumption that the major axis of the ellipse is colinear
with the image plane velocity (VILOS of Figure 7).

The measurement update relations for an Extended Kalman
Filter using the inverse covariance form are

Pl(t+) = P-lt.) + HT(t )--l (i Cti )  (124)

_(t+ = (P-1 ( +-l (125)

K(ti) = P(ti)HT(ti)R_1 (ti) (126)

A_(t+ ) = (t7) + K(ti){r(t i ) - h(x(t7),t.)} (127)

where r(ti) is a sample of z at time ti -

The R matrix is the covariance of the measurement model.
For pixels with assumed independent, equal variance noise,

R will be constant in time and of the form

R = RFI and R- 1  = 1 (128)

The H matrix is defined as

ah(x,t)
H(ti) = ax (129)

For details of how this derivative is computed, see Ref 5

and the program listing (subroutine MEASF) found in Appen-

dix F.

The inverse covariance form of the measurement update
( equations was used for computational efficiency. This for-

mulation requires inversions of two matrices both of the
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state vector dimension. Had the standard Kalman filter

equations been used, only one inversion would have been

required. But, that one inversion would be for a square
matrix of the order of the measurement vector dimension, a

=1 64 x 64 matrix.

Returning to the problem of identifying av, a and/or

AR, there are several methods available. The uncertain

parameters can be included in the state vector and, if
modelled as Brownian (as in this research), requires statis-

- 1tical knowledge of the uncertain parameters, which is often

difficult to provide. Also, the appropriate driving noise

strength for the dynamics model may be difficult to inter-

pret physically.

Complete maximum likelihood equations generally yield
good results but could never be implemented on line (Ref 16:

10-126). Multiple model adaptive estimation (Ref 16:10-103)

is a possibility, as are some ad hoc procedures (Ref 16:10-

121). Multiple models, however, would require many models

to span the variation of missile size with range and pro-

jected view with respect to LOS. The method finally chosen
was a gradient minimization technique. It approximates

full scale Maximum Likelihood estimation of states and

parameters, but with significant computational advantage,

critical to online implementation (Ref 10:10-1).

Equation (123), the filter measurement relation, can

be rewritten with the parameters of interest in evaluated

form as

h (X (t il'evAR '{ti )  = I4xp .-

v

( (Y-y )cose-(x-xP)sinB)
2 AR2 ] (10

+ PU2 (130)
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( Note that only two of av , a pv or AR need be estimated as

they are related by equation (119). For simulation pur-

poses, AR and av were estimated so as to be directly com-

pared to similar parameters already in the truth model.

For actual implementation, a tradeoff analysis between per-

formance and efficiency would have to be made to determine

which of the three possibilities (av and AR, av and a

Upv and AR) is best.

* The approach used to estimate a and AR was a gradient

recursion, minimizing the quadratic cost function given

below in equation (131).

L(x(ti)'avAReti)

= r(t.) - h("(t:),t.) T[r(t) h("(t-hIt.) (131)

This equation can be viewed as a simplified form of maximiz-

ing

Lln(i) A  = f Z (t i  Z (ti_ ) , A(r ( t i ) 17 (t i -
l ) ,b ) (1 31a)1 i. i- --

where f is the density function of the current measurement

based on all previous measurements and the parameter vector

(A). Explicitly equation (131a) is

L' (r(ti) ,A) = 1n[2. -m/2 EL(ti ) 1-1/ 23

where PL(ti) = H(ti)P(t)H T(ti) + R(ti)

The conditional density function of equation (131a) will be

maximized when equation (131b) is maximized. The first term
in (131b) does not affect the maximization and in the second

term P'1 is deleted primarily because of low confidence in
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C it. Also, having 64 measurements may tend to smooth the

function. Removing pL7 was assumed not to change the posi-
tion of the minimum substantially. Then the estimator

equations are

ARF(ti) = AR(ti) + c (132)
aAR A(12

AARF

CvF' = vF (ti) + c 2 L (133)

laV = avF

where

1c = a constant determined empirically which is the
same in (132) and (133)

Another advantage of this method is that part of the compu-

tation needed for the partial derivatives in equations (132)
and (133) is already done in evaluation of equation (129).

All three partial derivatives 1_ -) are computed
in the MEASF subroutine. See the program listing for

details of equations (132) and (133).

Although AR and a v were estimated every sample period
here, this may be avoided. AR and av do not change raptdly

and could be estimated at a slower rate, for example every
other sample or every five samples. One caution should be

noted, however. Other portions of the filter algorithm
estimate various parameters and these estimations are also
dependent on the residuals given by

r(t = r(t.) - h(x(t ),ti) (134)

The residuals are in turn dependent on h(x(t_) ,t) and
therefore AR and av" So, equations (132) and (133) must

acquire correct values rapidly and maintain them. If AR
and av estimates differ considerably from the true values,

Cthe residuals may be in error, making the estimation of other
uncertain parameters difficult.

82



Dynamic Driving Noise Estimation

The performance of any Kalman filter depends on ade-

quate knowledge of certain characteristics. Some of these

that must be known are the statistics describing the dynamic

driving noise. Several methods to estimate the driving

noise adaptively are maximum likelihood, multiple model
adaptive (Bayesian) techniques, correlation, and covariance

matching techniques (Ref 16:Chapter 10). The ability to

change RFd in real time was deemed necessary because an

air-to-air missile can exhibit a wide range of dynamic

characteristics. Therefore, maximum tracking accuracy could
not be achieved with a single choice of S!Fd" Even with

adaptive estimation of RFd' a compromise between statistic-

ally accurate estimates and rapid response to a change in

RFd is required. The two concepts tend to work against each
other and it is therefore difficult to design an estimator

with both attributes.

Associated with an adaptive RFd estimation, there seems

to be two logical divisions of state estimation, an acquisi-

tion mode and a tracking mode. To start the filter algo-

rithm, an estimate of the state vector and covariance must

be provided. Because of the distances an air-to-air missile

can travel in one sample time (80 pixels or so) good esti-

mates of position and velocity are required by the filter.
To allow for errors in values handed off to the filter, from

a radar for example, an acquisition mode was used.

The acquisition mode consisted of an initial filter
state covariance matrix P and driving noise QFd' with sig-

-O

nificantly increased values over what normally would be used

for the tracking mode. The P matrix would be a function of-o]
the error statistics of the hand off device and -QFd would be

a function of known deficiencies in the dynamic model of the

filter. P was then allowed to propagate and update normally,

using QFd values appropriate for tracking, thereby reducing

the covariance matrix to its proper values.
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The Fd matrix in equation (107) is the result of a

stationary process and is normally a constant matrix. To

obtain adequate performance for a maneuvering target -Fd
needs to be "larger" than that necessary for a benign tar-

get. This larger value for QFd will, however, degrade the

filter performance with the benign target. For the best
performance possible in both situations, QFd needs to be

estimated adaptively. Adaptive estimation was not done
during the acquisition phase (first .5 sec) unless the noise

strength that would represent the maneuver exceeded the fil-
ter noise strength. Instead a 2in equation (107) started at
a value larger than normal tracking would require (typically

a2 =600 pixels/sec 3 for the six state filter or 600 pixels/sec5 for the eight state filter), then was reduced linearly

to a value characteristic of a benign target, at .5 sec
(typically a = 150 pixels/sec3 or pixels/sec5 depending on

the filter used). This reduces the number of parameters
needing estimation immediately and precludes the possibility

of induced stability problems. Also note that reducing aD

has no effect on the atmospheric portion of -d during
acquisition.

After the acquisition phase, adaptive estimation of

Qd starts. Again, several methods can be used (Ref 16:
Chapter 10). A full scale estimator based on maximum like-

lihood suffers from computational loading problems. This
makes it virtually impossible to implement on line without

simplifying assumptions. Multiple model adaptive estima-

tion techniques are possible but would require more storage

and computing capability. The estimator finally selected

was an ad hoc procedure based on equation 10-93 of Ref 10.
It can also be interpreted as an approximation to a maximum

likelihood estimate.

Heuristically, the estimator can be developed as fol-

lows.
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-~i 1 -_F(ti,ti l)(t l..)±_ (ti,ti...) + 2_Fd(ti~1)
+ PQ-td) -- 1

(135)

also

p(t + ) = P(ti) - K(t )H(t.)P(t.) (136)

solving equation (136) for P(t7) yields

P(t-) = P(t.) + K(tM)H(ti)P(tT) (137)

where the term K(ti)H(ti)P(t) is preserved intact because

it will be estimated on the basis of observed residuals.

Setting equation (135) equal to equation (137) and solving

for -d yields

- + + T

(138)

Now all that is needed is an estimate of the first term in

equation (138). The state update equation (127) can be

written as

_(t + ) - xl(t) = K(ti)r(t i ) = Ax(t) (139)

An estimate of E[Ax(ti)AxT(ti)] can be had by forming

SE[Ax(t x(t)] )_1x [Ax(t.)AxT (tj)] (140)
N=i-N+l -

Assuming the filter is operating in steady state, Ax(t i ) is

a white sequence with covariance K(ti)H(ti)P(ti) that is

independent of x(ti) (Ref 8:229).

K(ti)H(ti)P(to) 1 IAx(t )AxT(tj)J (141)

j i-N+l - -
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so an estimate of QFd(ti) becomes

I IXt.AXT (t+ t'2Fd(ti) 9 N 3 A~.Aj=i-N+l

-,_ titl)P(ttl Ti~i (142)

Rather than just average Ax(ti-)AXT(ti ) , the entire relation
is averaged over the most recent N samples.

(t i ) N Z {A(t.)Ax T +.

QFd(t i E A - P(t)
j=i-N+l-

- tj-1)P(t . )j_(tjot ) (143)

One advantage of equation (143) is that all required

quantities are readily available from the filter in the form
needed. Also, to reduce storage requirements, a fading mem- )
ory approximation to a finite memory was employed. That is

*FdtiJ = a _Fd(ti-l) + (l-a)QFdl(t i ) (144)

where QFdl(ti) is the single term in the summation of equa-
tion (142) corresponding to j=i and a is a parameter which
essentially controls how long old estimates of QFd are main-
tained. If a=O this corresponds to using current QFdl only, .
while a=l corresponds to ignoring current QFdl and using

only old _Fd" Low a implies little confidence in previous
estimates, while high a gives slow response to actual QFd

changes.

Typical values of a are

.7 < a < 1 (145)

From partial investigation of the sensitivity of QFd to this

parameter and the desire for statistical confidence, a was _)

set at .8 for this research.
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imax Estimation

Looking at equations (123) and (129), also seen in
Chapter II, reveals that IF plays an important role in pro-
viding accurate residuals. Because of both uncertainties
and changes in Imax with time, no a priori value is adequate

for all probable cases. Therefore, on line estimation of
IF is required. For a detailed explanation of Imax estima-
tion see Chapter V.

Several methods are possible: (1) find the largest
value in the measurement array and set IF equal to it;
(2) one dimensional curve fitting to several pixels adjacent

to the pixel with the highest observed intensity and then

setting IF equal to the maximum of that curve; and (3) two
dimensional surface fitting to several pixels surrounding

the highest pixel and then setting IF equal to the maximum
of that surface. Method (1) was used here because it was

easy to implement and provided adequate performance for
initial investigations. In equation form the estimator is

IF(tj) = max{zi(t j ) i i 641 t = tj (146)

Improved estimation performance can be obtained via two
modifications to this method.

Because Imax does not vary rapidly (over a few samples),

a smoother estimate can be obtained by averaging over time.
This equation, similar to equation (144), is:

IF(tj) = c IP(tj-l) + (l-c)IF(tj) (147)

where IF is found by equation (146).
Even with time averaging this is still a biased esti-

mate because IF(ti) includes a noise component and Gaussian

shape effects which will be explained further in Chapter V.

An error function was determined empirically of the form
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IFtj) = IF(tj) + e(a v(t)) (148)

This error function should depend upon IF' apv' Xpeak' and

Ypeak also but they were not included because, for the tests

using equation (146), Imax was not varied and the dependence

on xpeak and Ypeak can be neglected as long as Xpeak<4 and

Ypeak<4 (intensity peak remains in FOV). Thus, the error

function was chosen to be a function of only av (ti). See

the program listing and Chapter V for more details.

C-8
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V. Adaptive Filter Performance and Modifications

Introduction

The basic new filter design described in Chapter IV is

evaluated to determine its performance characteristics.

Each facet of the adaptive filter, including the parameter

estimation techniques, the acquisition scheme, the six state

filter, and the eight state filter, is tested and its per-

formance examined. First, the performance of the techniques

for Imax estimation are discussed. Then av and AR estimates
are compared to the truth model values; some differences are

noted with possible explanations. Next, the acquisition

strategy as formulated in Chapter IV is shown to be satis-

factory for the trajectories studied and allows the filter

to recover from limited hand-off errors. Errors caused by

the non-inertial properties of the rotating LOS reference

frame (non-inertial accelerations) are noted in cases in

which the six state filter is used and are greatly removed

by the use of the eight state filter. Designed originally

to allow tracking of a maneuverable target, the RFd estima-

tion process exhibited stability problems for some steady

state trajectories and continual loss of track for scenarios

of extreme dynamic maneuver initiation. Modifications were

attempted to detect vehicle maneuvers and enhance filter

tracking. These modifications were tested and proved par-

tially successful. (The input parameters and selected per-

formance plots for all cases discussed in this chapter can

be found in Appendices K and L, respectively.)

I Estimation

The estimation of I uses one or more of three tech-max

niques. The first technique as described in Chapter IV

chooses IF to be equal to the largest value in the measure-

ment array for each sample period. The second technique,

also described in Chapter IV, was the time averaging of the
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maximum measurement as illustrated by equation (147). The
third technique uses an error function to remove a bias

caused by a combination of target size and shape and an
upward shift of all simulated values which was purposely
programmed to avoid negative measurement values. Physically,

negative FLIR outputs are impossible assuming no instrument
noise. So, after the measurements are generated in the
truth model to reflect the target intensity function and

after the simulated zero mean background noise is added to

the measurements, all values are biased upwards so that the

largest negative measurement is set to .1. This process

actually models the physical effects of the time vaij ng
nature of the mean of the background noise. This las- tech-
nique, which was briefly mentioned in Chapter IV, is devel-

oped in more detail in this section. Test data will demon-
strate that a combination of the three techniques yields

the best estimate of Imax*

CThe maximum measurement technique was used in tracking
a target, with av = 3 pixels, apV = 1 pixel and Imax = 25
moving diagonally cross range, target trajectory 2 as

described in Chapter II. The estimate for Imax in this

scenario is plotted in Figure 20. The data plotted is the
Imax estimate at every tenth of a second for the first three

seconds of a single simulation run. The time average value
of Imax is 24.47, compared to a true value of 25, with a

standard deviation of 1.12. This compares roughly to the

standard deviation of the background noise, aN = 1.414.

Two characteristics of the distribution shown in Fig-
ure 20 are notable. First, the distribution of the points

demonstrate that the Imax estimates follow the added noise,

resulting in an undesirably large dispersion of values.
, Second, the average Imax estimate is less than the true

value. The cause and solution for this trend itill be d4

cussed more in the two paragraphs to follow.
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The second technique uses a time average of the maxi-
mum measurement value to determine an I estimate. As

shown in equation (147), the current maximul measurement

is appropriately weighted and added to a weighted value of

the previous estimate of Imax * The purpose of this tech-

nique is to produce a smoother estimate of Imax* Figure 21

shows that a better behaved trend is achieved. This graph

uses the same data values as Figure 20, but time averaging

is used weighting the current measurement maximum by .2 and

the previous Imax estimate by .8. The average Imax is 24.53

with a standard deviation of .334. While the average is

very close to the average arrived at without smoothing, the
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standard deviation has decreased by a factor of 3. Time
averaging appears to be a very good technique to use.

For both of the techniques just discussed, the average

estimated Imax was about half of an intensity unit less than
the true value. This fact is attributable to the summation
of two effects. As previously mentioned, to avoid negative

simulated measurement values (assumed not to be possible
with the FLIR sensor as instrument noise is assumed negli-

gible), all measurements are biased positively. This is
explained by the truth model measurement scheme. After gen-

C erating appropriate measurement values based on the targets (
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intensity function with Imax equal to 25, background noise

of known strength is added to each measurement. Where the

target intensity is small, this process can result in nega-

tive values in the measurement array. To solve this prob-

lem all measurements are biased upward (positive) to make

-the largest negative value equal to .1.

IThe second effect is caused by a combination of target

size and shape. Each measurement based on the Gaussian

intensity function as defined in equation (7) represents

the average target intensity over the area of the pixel.

(The procedure for computing the pixel output due to target

* intensity in the truth model is more completely detailed in

Appendix D.) Ignoring for a moment the added background

* noise, the average intensity value of a given pixel will be
less than Imax even if the maximum is found within the

pixel. This is shown in one dimension in Figure 22. If

*! the area under the Gaussian curve is integrated from 0 to 1
(i.e. one pixel) and then divided by the length of the

interval, the resulting average, Iavg, is less than Imax -

I(x,y)

Ima x ..

I av9

I,0

Figure 22. Average Value of Gaussian Curve
Over Interval 0 to 1 (1 Pixel).
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If the target is small in size, i.e. apv = 1 pixel and

v = 1 pixel, Iavg can be significantly smaller than Imax
because variation of the intensity function is large over
one pixel. For a large target, the curvature of the func-
tion is more gradual and consequently the average intensity

is closer to the maximum'in the pixel. Conceptually, I
above can be expressed as a function of Im~ Xpek vmax' peak' Ypeak'
v and pv* This function could then be solved for Imax,

but it would be a very complex process. Instead, this func-
tion can be approximated by a polynomial fit in terms of v

only, as described in the following paragraph.

The combination of the upward bias to avoid negative

noise values and the downward bias due to target intensity

function curvature resulted in an average Imax in Figures 20

and 21 of about 24.5 for apv = 1 pixel and ov = 3 pixels.
Varying the size of the target in the cross range trajectory

* results in different averages for Imax as shown in Table XV.

In Table XV the subscripts F and T correspond to filter and

truth model values, respectively. avF is the estimated

standard deviation of the target in the direction of the

target's velocity vector. av estimation and the biases
noted between avT and average avF in Table XV are discussed
more fully in the following section. The data used to estab-

lish Table XV values for avT = 3.0 was not the same data as

was used in Figures 20, 21, 23, and 24.

TABLE XV

I Variation with avF for Single Simulations
of Cross Range Target (apv=l pixel)

Avg Error
OvT Avg avF Imax Avg IF (Imax-IF )

1.0 1.57 25.0 22.91 2.09

3.0 3.63 25.0 24.57 .43

5.0 4.78 25.0 25.00 .0
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From the values of the errors and avF , an error func-
tion can be derived to compute a correction for each Imax

estimate. A second order polynomial fit to the three points

in Table XV (avF= 1.57 pixels, error = 2.09; avF = 3.63
pixels, error = .43; avF a 4.78 pixels, error = 0) resulted

in the following error function

e(avF) = .136 aVF - 1.518 avF + 4.18 (149)

A second order polynomial was chosen because it was simple

to use and the coefficients were determined exactly by the

three points. A more precise functional form could have

been derived which would have required more data points and

would have resulted in a more complex function. The Imax

estimates shown in Figure 20 were recomputed using the

error function and are displayed in Figure 23. In Figure 23

the maximum measurement for each sample period is corrected

with the error function using the filter's estimate of avF

for that sample period; time averaging is not used. The

resulting statistics of the estimation process is an average

I of 24.99 with a standard deviation of 1.16. The bias

has been removed but the standard deviation is still large --

Imax estimates are still reflecting the background noise.

The error function was optimized for Imax = 25, but would
provide some correction if Imax were other than 25. How-

ever, a time shortage did not allow a more detailed study.

Further analysis could probably determine an approximating

error function depending on avF and IF (ti_1) (the previous

estimate of Imax ) and other parameters also for an appropri-

ate range of av and max

The best Imax estimation procedure incorporates the

time averaging to smooth the trend in the estimates and the

error function to correct for the bias in the average maxi-

mum measurement. Shown in Figure 24 are the same data

points previously discussed with time averaging and error

function. The average IF is 24.99 with a standard deviation
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Figure 23. Imax Estimate: Maximum Measurement With
Error Function

of .299. These statistics and a visual examination of Fig-
ure 24 reveal the success of this combined estimation pro-

cess. The bias is gone; the estimated Ima values are
grouped around the IF = 25 line. Also, the distribution

of points is well behaved, no longer tracking the total
noise amplitude. This combined procedure results in an
accurate Imax estimate well worth the extra computations

needed.
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c AR and av Estimation

The gradient minimization of the approximated likeli-

hood function given in equation (131), provided accurate

estimation of a v and AR. The step size constant c intro-

duced in equations (132) and (133) was determined empiric-

ally and set equal to .001. Optimization of this parameter

was not accomplished, but .001 yields good response and

damping characteristics. The test values of c were between

.015 and .0003 inclusive. The larger value provided oscil-

latory characteristics (underdamped); the estimate would

oscillate above and below the average value (about .75

pixels p-p). The smaller value gave more consistent esti-
mates but was slower responding (overdamped). The value
used, .001, gave the slightly underdamped response desired.

Figures 25 and 26 are graphs of AR, av, apv estimates
(a pv is implied by eq. (119)) for a missile on trajectory 2

(cross range). The truth model values are: ART = 5,
C VT = 5, aPVT = 1. The response from the filter initial

values (AR = 1, avF = 3) is rapid and produces values ade-

quate for tracking within .1 seconds. Steady state (when

initial transients are gone) is reached in less than .2

seconds and the parameters remain virtually unchanged for

the duration of the run.

Note the steady state time averaged values of avF and

AR, differ slightly from the truth model values. AR, is

biased downward .93 pixel with a standard deviation of .16

and avF is also biased downward .17 with a standard devia-

tion of .32. The standard deviations indicate that the

filter values are most likely not equal to the truth model

values. The cause for this bias is probably threefold.

First is the differet way by which the filter evaluates the

h(x(ti),t i) function (equation (123)) and the truth model

evaluates the measurement intensity function (equation (7)).

Averaging 16 equally spaced points inside the pixel (truth
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Figure 25. Transient Response of av
and AR Estimation

model) yields a much better approximation to the integral

than using just the midpoint (filter). Second is that

unbiased errors are not assured in this form of the maximum

likelihood estimation concept because several simplifica-

tions and linearizations are made to the complete maximum

likelihood equations to allow real time application. Third,

after the truth model image is formed by equation (32), the

lowest value in the array (most surely a negative number

due to addition of samples of zero mean noise to the pixels

at the edge )f the array) is set equal to .1. This will
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increase the intensity of each pixel. Since no compensation

*is added to the filter's estimation of this intensity, any

perturbations to the image caused by the truth model simula-

tion procedure will be reflected in the avF and AR estima-

tions of the filter.

The original purpose of the av and AR estimation was

to enhance state estimation by closely fitting the intensity

pattern. As long as this is accomplished, the exact values

estimated for avF and AR, are of secondary importance. To

this end, an in-depth study to determine the cause of the

difference was not accomplished. Figure 27 compares one
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Figure 28. a and a for AR = 3 (Truth Model)

typical frame of the simulated image to the filter's esti-

mate of that image. The close fit between the two, espec-
ially near the intensity peak, is evident. Truth model

parameters for this frame were a = 5.0, a = 1, ART = 5,

Imax = 25 and filter estimated parameters were a = 5.15,
apvF = 1.23, ARF. = 4.18 and I. = 25.33. Also, the truth

model image is corrupted with noise as usual.

Figure 28 is a graph of avF and a estimates with

truth model ART - 3, = 1, aT = 3. Figure 29 is simi-

lar to Figure 28 with truth model AR = 1, aUp -1, v -1.

In the latter case of Figure 29, the avF and apvF are erratic

due to a loss of resolution when a v and ypv are less than
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two. The area of the array where the larger gradients exist

simply are not covered by enough pixels to provide smooth

estimates. This erratic behavior, although uneasing, did

not degrade filter performance noticeably. Time averaging

could be used to smooth the estimates if required by differ-

ent circumstances.

Target Acquisition Procedures

The acquisition procedures as described in Chapter IV

worked well under nominal conditions and received limited

testing to determine their flexibility. The acquisition
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strategy basically focuses on two questions: to what value
should P be set, and how should RFd be used for acquisi--o
tion?

For most cases, the acquisition procedure was to set

both P and 2Fd large and then to use a linearly decreasing

-Fd" The values of P, were large to reflect the inaccura-
cies of the handoff values from other tracking systems.
The variances for the position, velocity, and accelerations
(when eight state filter was used) on the main diagonal

were set to 25 (pixels2 ), 2000 (pixels2/sec2 ), and 100

(pixels 2/sec 4), respectively. The variance of the atmos-
pheric jitter was kept at its initial input value of .2

(pixels 2). Except for the main diagonal, P contained only

zero entries. In simple terms, the high values in P cause
-0the filter initially to follow the measurements more closely

through an increase in the gain matrix. Also for acquisi-

tion, a , used in computing QFd for the eight state filter

per equation (107) and for the six state filter per equa-

tion (118), is set initially large at 600 (pixels/sec3 for

the six state filter, pixels/sec5 for the eight state fil-
ter). This value was chosen based on observed values in

six state filter simulations. This value was arbitrarily
used with the eight state filter and retained because it

gave acceptable performance. The value of cr2 (the targetD2
dynamics portion of QFd ) was decreased linearly until aD =

3 5150(pixels/sec or pixels/sec depending on the filter used)
between times 0.0 and 0.5 seconds. The high initial values

in RFd reflect an uncertainty in the target dynamics upon

acquisition. At hand-off the missile could be turning,

linearly accelerating, or in constant velocity straight

flight, and the tracker must be prepared to handle any case.

Because Qd effects P through equation (108) and conse-

quently the gain, the initially large 2Fd again causes the

filter to strongly track the measurements though less

directly than large Po This can be viewed as extending
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the acquisition (maintaining high P and K) time interval

beyond that obtained when a high Po is used with a low con-

stant RFd for all time. The linear slope used for 2Fd was
based on intention; better schedules are probably devisable

with more extensive study. Overall, these two simple tech-

niques performed well in cases 33 through 35 in which these

techniques were used in conjunction with the six state fil-

ter, as can be viewed in their plots in Appendix L. Because

these cases were not directly designed to test the acquisi-

tion process (i.e. hand-off values of velocities and posi-

tion to the filter had no errors), little can be concluded

from them other than the fact that the acquisition schemes

worked.

One test of the filter's acquisition flexibility, case

32, was performed and demonstrated good filter stability.

The test scenario was the tracking of a target moving cross

range using the eight state filter. The range at closest

approach was 10 kilometers. The high P scheme previously

discussed was used, but the linear schedule for Qd was not

used because it was linked in the computer software to the

2Fd estimation scheme which was deactivated for this case.

Rather, 2Fd was held constant throughout the runs with
Cr = 600 (pixels/sec5). The hand-off values of the inertial

velocity were = -508 meters/sec, Yo = -308 meters/sec,

and Zo = 8 meters/sec compared to true values of -500, -300

and 0 meters/sec. These values were chosen to be represent-

ative of probable hand-off errors from instruments such as

radars and constitute a 2.4 percent error. The results of

case 32 show the flexibility of these procedures, as can be

seen in Figures 30 and 31. Figure 30 shows the x channel

target position mean error and one sigma envelope. The

plot shows an underdamped but stable response to the

initial velocity errors. Similarly, Figure 31 displays

the x channel, target velocity, mean error and 1 sigma
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envelope. The filters response is again stable though
underdamped. Similarly, results were achieved for y channel

target position and velocity errors (see Appendix L). The

target was never lost in the 20 simulations that constitute

case 32. These results give some confidence in the high Po

acquisition technique and indicate that the linearly
decreasing Q-Fd scheme is not needed for successful target

acquisition. However, much more study is needed to deter-
mine the limitations of this acquisition technique or to
develop other techniques. Further study is desirable but

infeasible in the time allotted. The basic feasibility and
performance of these techniques have been demonstrated.

Another case which warrants attention in resolving the
acquisition strategy would rerun case 32 (hand-off errors)

without increased P to determine how critical it is to-o
successful acquisition.

Performance of Target Dynamics EquationsC
The two formulations of target dynamics which resulted

in six state and eight state filters were tested to estab-
lish their performance capabilities. The six state filter

was first tested against the missile moving cross range

(see Chapter II for motion descriptions), and the resulting
performance plots indicated a serious problem attributable
to a non-inertial acceleration effect caused by the rotating

reference frame. A circular flight path for the target was
tested against the six state filter to confirm that the

problem was indeed caused by non-inertial acceleration

effects of the rotating reference frame, as will be discussed

in more detail in the subsequent paragraphs of this section.
The eight state filter, as expected, solved this problem by

estimating the acceleration, which compensates for the rotat-

ing frame effects.

Case 33 shows the six state filter tracking the target
K moving diagonally cross range starting towards the lower

108



i/

left hand corner of each frame. Fd estimation is active
during this case without ad hoc 0-Fd bounding (as will be

explained more fully in the next section). Figures 32 and

33 show the x and y channel target position error perform-

ance plot for case 33. The projection into the FLIR image

plane of the inertially constant velocity vector of the

missile changes with time as the FLIR system and its refer-

ence frame rotates to maintain the target in the center of

the field of view. Thus, a non-inertial acceleration is

created by the rotating system and frame. This unmodeled

non-inertial acceleration manifests itself in a small but

definite diagonal trend (positive slope) in the mean, and

mean plus and minus one sigma curves of Figures 32 and 33.

The mean value curve is no longer centered about the 0 line

but about a line with positive slope (about 5 to 10 degree

slope) which intersects the 0 line about 2.5 seconds, the

point of minimum range. Figures 34 and 35 show the x and y

channel target velocity error performance plots for case 33.

The positive diagonal trend is again noted, and the

velocity estimate diverges during the last second of the

run because the QFd estimation does not keep up when the

non-inertial acceleration again becomes large. The accel-

eration created by the rotating reference frame is equal to

two times range rate times angular velocity divided by

range, 24w/p where w is the angular velocity of the LOS.
This expression is the angular equivalent to the linear

translational term found in an equation in Reference 15,

page 31. Thus, the non-inertial acceleration becomes insig-

nificant at very long range, and at minimum range for the

straight cross range target because i = 0. (Note that w is

at its maximum at minimum range.) The maximum absolute

acceleration occurs somewhere between these two positions

and is a function of the three quantities, p, , and w.

To confirm the hypothesis that the unmodeled non-inertial

acceleration was causing the trends shown in case 33, cases 34
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and 35 were run. The target flight path as viewed from
Kabove followed a large circle with a radius of 20 kilometers

and with the tracking system located at the circle's center.
Such a flight path would not result in any non-inertial

accelerations because the true target velocity vector would
have a constant projection in the plane of the FLIR field of
view rotating with the target. The six state filter tracks

the target extremely well. However, the appearance of nega-

tive values on the main diagonal of P due to numerics and

the QFd estimation caused some problems, and several ad hoc
fixes were tried as will be discussed in more detail in the

next section.

Thus, cases 34 and 35 represent the tracking of the

circular flight path target with different solutions to the

P problem. In case 34 the main diagonal terms of the newly
computed Fdl (the second term on the right hand side of

equation (144)) were set to .1 when a negative value was

C detected. The other values in the row and column in which

the negative main diagonal term resided were set to zero.

Similarly, for case 35 any negative values on the main diag-

onal of P were set to .1 and the corresponding rows and
columns were zeroed out. Figures 36 and 37 show the x and

y coordinate target position error statistics for case 34.

Gone is the diagonal trend in the statistics which had been
noted in Figures 32 and 33 for case 33. Figures 38 and 39
display the x and y channel target velocity errors for case

34, and the non-inertial acceleration effects are absent,
too. Case 35 results exhibited the same characteristics,

with the disappearance of the trends seen previously in

case 33.

The eight state filter, which includes acceleration

states for the x and y channels, was a logical solution to

the problem of non-inertial accelerations of the rotating

reference frame. An altered dynamics model of the six state

Cfilter incorporating appropriate correction terms is a more
direct approach to deal with the problem, but it would
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require range and range rate data to work effectively and

would result in a nonlinear propagation formulation which

would be more difficult to use than the eight state filter.

In case 36, the eight state filter tracks a target follow-

ing the cross range trajectory (the same trajectory as cases

32 and 33). RFd was held constant throughout the simula-

tions -- a QFd acquisition schedule was not used and RFd

adaptive estimation not incorporated.

Figures 40 and 41 show the x channel target position

and velocity errors, respectively. The non-inertial accel-
eration effects due to the rotating reference frame are now

estimated in the filter so that the diagonal trend of the

statistics seen in Figures 27 through 30 of case 33 is not

seen here. For a more direct comparison to case 36, cases

33, 34, and 36 should be rerun without RFd adaptation.
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QF__d Estimation Performance Analysis

The estimation of RFd as formulated in Chapter IV met
very limited success for the trajectories tested and even-
tually became more hindrance than help in terms of reaching

the research goals. QFd estimation was intended to allow
filter adaptation to changes in target dynamics. However,

it did not prove to be responsive enough to prevent loss of
track in high g turns. Other solutions to the high g turns

were investigated as will be discussed in the next section.

Filter stability problems also were caused by the Fd esti-
mation technique for certain target scenarios. The first

cases of interest are 33 and 37 in which a target moving
straight cross range is tracked by the six state filter

with and without QFd estimation, respectively. A summary of
the filter performance for both cases is found in Table XVI.

The estimation scheme worked successfully in case 33,

resulting in very acceptable results slightly larger than

those achieved without 2Fd estimation. Because 0Fd estima-
tion is aimed at adaptation to changing missile dynamics,

it was not expected to improve on steady state (non-accel-

eratirg missile) filter performance unless there was a sig-

nificant mismatch in non-adaptive RFd parameters. The non-
adaptive 2Fd six state filter was manually tuned to this

particular cross range trajectory. Consequently, its per-
formance was very good. Again, time constraints did not

allow an extensive study of trajectories with increased

motion (linear accelerations and a variety of turns) creating

significant mismatches for the non-adaptive RFd filter.

*As mentioned briefly in the previous section, the study

of the unmodeled non-inertial acceleration terms, which was

noted as a performance degrading trend in case 33, led to

the study of the circular flight path trajectory tracked by

the six state filter in cases 34 and 35. Then the eight

state filter was tested against the straight cross rangu

target in case 36. These cases, 34, 35 and 36, were initially
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TABLE XVI

Six State Filter Tracking Cross Range Target
With and Without QFd Estimation -

Cases 33 and 37

Case 33 Case 37
w/-F d est. w/o QFd est.
x y x y

Average Standard Deviation

Target Position
Actual .22 .19 .20 .17
Filter-Indicated .22 .20 .22 .21

Target Velocity
Actual 3.5 3.0 2.5 7.5
Filter-Indicated 3.0 3.0 5.0 5.0

Average Absolute Error

Target Position .12 .08 .05 .05

Target Velocity 1.5 1.5 1.0 1.0

plagued with the infrequent appearance of negative values on

the main diagonal of P due to the Q-Fd estimation. What

seems to happen is that when the dynamics model matches the

target trajectory (i.e. six state filter with circular tra-

jectory and eight state filter with straight cross range

trajectory), values in P become small and susceptible to
going negative. This can be caused by errors in using AxAxT

as a representation of KHP in equation (138).

Several solutions to the P problem were tried before

final ad hoc fixes were found. The initial theory was that

the main diagonal terms of 2Fdl' the second term on the

right hand side of equation (144), should be bounded above

at specified values and below at zero. The lower bounding

was accomplished by testing the main diagonal terms of QFd1

for each sample period. If a negative value was found, that

value was set to zero as well as every value in the row and

column in which it was found. For example, if the third

term along the main diagonal was found to be negative, then
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third row were set to zero. If the computation of 2 rFdl

resulted in a main diagonal value greater than a prespecified
value, say 600, then that value was set to 600 and the other

matrix values in the row and column of the main diagonal

term were set to appropriate proportionate values (maintain-

ing same correlation coefficients through the adjustment).
For example, the third main diagonal term is computed to be

700. Then that term is set to 600 and the values of the
third column and row were multiplied by the square root of
600/700. However, these two techniques did not totally

remedy the negative values on the main diagonal of P. The
same lower bounding scheme used on 2Fdl was attempted with

P. The result was a totally unacceptable tendency for the

filter to lose track of the target (go unstable). Finally,

two similar ad hoc procedures were tested and appeared to
work. One technique performs the same lower bounding pro-
cess on 2Fdl as described above except that a specified pos-

itive value, such as .1, is substituted for the main diagonal
bound instead of zero. The other technique is the same as
just described but performed on P. Lower bounding QFdl and

P at .1 was used successfully in cases 34 and 35, respec-

tively, as depicted previously in Figures 31 to 34. The
value of .1 was determined to be a reasonable lower bound

based on the observed values of P for a variety of cases.

Comparable cases using zero lower bounding on 2Fdl and P and

" upper bounding on QFdl were not run because usually the

resulting numerical problems would not allow the computer
simulation software to run to completion.

As will be shown in the next section, the RFd estimation

technique is not responsive enough to handle the extreme
maneuvers of an air-to-air missile, and other techniques

appear to be more promising for adapting to detected maneu-

ver initiations. This fact, combined with the problems just

- discussed, cause serious doubts as to the use of QFd estima-
tion. However, it should be pointed out that QFd estimation
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deserves a much more thorough study, especially for scenar-

ios between the benign straight line trajectories and vio-

lent 20g turns, the two extremes employed in this study.

Also, the robustness of a constant QFd needs to be tested.

Maneuver Required Modifications

The estimation of RFd adaptively, as described in Chap-

ter IV, was intended to allow tracking of a maneuvering tar-
get while minimizing position errors on all trajectories.
The first runs of the eight state filter on trajectory 3
(20g pullup) were disappointing. Several problems and poten-

tial solutions surfaced and are discussed in the following

paragraphs.

The FOV of the 8 x 8 array (160 prads x 160 prads) was

too small for highly maneuvering targets. The 20g lateral

acceleration can cause the image to leave the FOV in three

samples (.1 second) if the position update is not accurate.
A related difficulty is resolution (number of pixels per

FOV dimension). Using an image size of 5 pixels by 1 pixel

(UvT = 5, apvT = 1), virtually all the position information

for the apv direction is contained within 1 to 2 pixels of
the peak position. That is, the high gradients occur within

that region. The 20g acceleration can move the image 3 to

4 pixels laterally in two sample periods. Figure 42 shows

this idea. With this much separation between the image peak

intensity position and the filter's estimate of that posi-

tion, the linearization used in the update

H ax - (149a)

x

is no longer valid. With significant separation, as in Fig-

ure 42, two factors cause the H function to be in error.

First, as the peaks of the intensity image and the filter h

function separate, the evaluation point (x(t )) is incorrect

and the linearization of equation (149a) is in error.
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Second, the tails of a Gaussian intensity function are nearly
constant and the partial derivatives of equation (149a) are

approximately zero. These two effects combine to suppress

any update when the situation of Figure 42 occurs. Even if
the image is in the FOV, the tracker will probably lose the

target, which makes detection and update imperative before

one sample is past.

The RFd estimation is accomplished in a way such that

_Fd(ti) is used for the next sample period to timesampl peio ti+1 •

hus, for the first sample after maneuver initiation at time

tit _Fd is still based on the (cross range) non-maneuvering
portion of the trajectory. Therefore, the filter gains are

low and the update is small even though the residuals are

high. This response was insufficient to allow continued
tracking and the image simply accelerated laterally out of

the FOV. Moreover, on the benign portion of the trajectory,

the -Fd estimate had become small (as it should with little

dynamic noise) and the fading memory smoother would not

allow a rapid increase in entries of A
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This problem required several parameters and some ele-

ments of the state vector to be changed significantly in one

sample period to maintain track. For example, the elevation
acceleration value, x6 in the state vector, must be changed

from 0 to approximately 2400 pixels/sec2 when the lateral (8)
acceleration is applied. *F and/or the P matrix entries

need to be increased to avoid losing track while changing

values in the state vector. Table XVII shows some useful

variables that could indicate and quantify a maneuver. The
quantity AxTAx is used to indicate a maneuver where

AxTAx = tr(AxAxT) (150)

and

Ax = P(t.)H T(t)-R (ti)I(t i ) - h( (t-),ti)] (150a)

Equation (150) was chosen as the maneuver indicator because

AxAxT was already available from the - estimation algorithm.

In many applications the residuals, in one form or another,

are used directly to monitor filter performance. But, in
this case the residual vector consists of 64 elements and to

use them is computationally impractical. A comparison of

AxTAx, the azimuth and elevation elements of HT(r-h) and true

errors for time starting at 3.9 seconds is given in Table

XVII. Since AxTAx is used for detection, Ax would seem

appropriate to quantify a maneuver. The difficulty with
using Ax is that equation (150a) contains P(t+) which might

have been artificially changed (protection from negative

diagonal elements) and possibly one or more elements of Ax

could be zero. To avoid this possibility and the computa-

tional burden of forming the residual vector inner product,

HT(r-h), a six element vector, is used to quantify the

maneuver. With R being a diagonal matrix, HT(r-h) is already

computed in the filter and requires no new computations.

Maneuver initiation occurs at 4.0 seconds and shows up in

(the filter at 4.03 seconds.
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(I TABLE XVII

Maneuver Indicators

Prospective Actual
Indicators Performance

TT x
HT(r-h) H (r-h) peak Ypeak
(izimuth (elevitTon azimuth elevation

Time Ax Ax element) element) error 6 error 6

3.90 .1024 -23.0 743.6 -.17 .17

3.93 .00821 -11.1 30.3 -.19 .05

3.97 .0063 -11.1 -110.2 -.01 .01

4.0 .0376. - 6.6 -575.4 -.07 -.19

maneuver
initiation

4.03 .9263 28.2 3105.0 -.07 1.59

, 4.07 .0077 2.8 39.0 .18 5.37
4.10 .0181 -1.5 -11.4 .37 12.11

Note the increase in AxTAx and the elevation position
element of HT(r-h) at time 4.03 seconds. The sign of the

HT-(r-h) element tells the direction of the maneuver, in this
case the acceleration is up (positive) perpendicular to the

velocity vector. The magnitude of 3105.0 is related to how
far apart the image and filter function h centers are. Note

that although the upward acceleration continues, the indica-
tion that a maneuver has occurred is lost by 4.07 seconds.

Therefore, it is imperative that the filter detect the

maneuver immediately and perform the appropriate update at

4.03 seconds with that knowledge.

Upon maneuver detection three actions should be taken.

At least an approximation or crude estimate of acceleration

that can describe the maneuver must be provided to the
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filter. The filter gains must be increased directly (rather;than allow them to build slowly by estimating RFd with
resulting P increase) to force increased emphasis of meas-
ured data over filter predicted location, damp out any

transients and account for uncertainties in maneuver quanti-
fication. Also, the FOV should be increased to avoid let-

ting the image escape the FOV. Taking the above steps should

allow the filter to track the target after initiation of a
maneuver. Expanding the FOV was not done in this research

for reasons mentioned in Chapter II.

Looking at Table XVII there is a definite correlation
between 6 6 and the respective elements of HT(r-h). This

correlation can be exploited to quantify 6a and 6 If 6
and 6 are then assumed to have been the result of a discon-

tinuity in the acceleration, an estimate of this change in

acceleration can be computed.

For 16,J = 160 of Table XVII, the respective elements_of HT(-h) differ considerably. HT(r-h) is given by

T Th(x(ti) ,t)
HT(r-h) ax [r(ti) - (-(t i ) ' t i )

X = x(t-) (151)

which is a strong nonlinear function of av, apv and e (see
eqn. (130)). Because arT = 5 and aPVT = 1 significant dif-

ferences will exist in the associated IjHT(r-h) l values.
Notwithstanding, there is a definite relationship between
the position errors, I6 1 and 1681, and their respective

F 
HT(r-h) elements.

An analytical solution for 6 a and 6 is not possible

so an empirical approach was attempted to obtain this quan-

titative relationship. Two coordinate frames seem reason-

able to approach this problem. The filter uses the azimuth/

elevation LOS system, but lateral acceleration is expressed

most easily in a missile oriented frame (av, a pv). The

filter frame is desirable insofar as the result is used in
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that frame. To this end, the size, shape and orientation

parameters of the filter (aVF, OpvF, sine, cose) are trans-
formed into Gaz and ael. This is done using the following
equations.

o2 11/2
pvF

y °az 1 (152)

2 1i/2

ael 1 nvF] (153)

where

e (154)
[_ .1/2

and subscripts az and el stand for azimuth and elevation,

respectively.

(The functional relationship g(-) desired, for example

6, is of the form

60 = g{[HT (r-h), aaz, aell (155)

where az image dispersion in the azimuth direction

ael = image dispersion in the elevation direction

The function g(-) is strictly a function of the entire

HT(r-h) vector. However, if tracking correctly, the depend-
ence on all elements except the one associated with eleva-

tion (0) can be neglected.

Because of nonlinearities and other considerations,
Tplots of 1og16 8 1 vs logIH (r-h)]81 were made. Figure 43

shows one such plot for a case with ART = 3. For values of

161 > .1 the high correlation with H Tr-h) is preserved.
For values of 161 < .1 the data is noisy and the correlation
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( is lost. The function sought from these graphs was of the

following assumed form

logl[HT(r-h)]pl = a logI6,1 + b (156)

where a and b are the adjustable parameters. In both cases
(ART = 5 and ART = 3), a was approximately constant, within

the resolution of the measurements, and set equal to .82.
Figure 44 shows the intercepts (b) for the two cases and,
as can be seen, b is nearly a linear function of a.

4

3

b 2

0
2 pvF 5

Figure 44. Intercept for Equation (156)

Equation (156) then becomes

logl[HT(r-h)],I = .82 logl6,I - .46 ael + 3.9 (157)

Solving for 18,I

( [log [HT(r-h)] + .46 ael -3.9
I6BI = exp 12.303 .82

(158)

132



This equation is applied to the elevation direction and a

j S- similar equation applied to the azimuth direction when a

maneuver is detected by Ax TAx (or HT(r-h) entries) surpass-

ing a threshold. The 6's are assumed to have resulted from

an acceleration not reflected by the acceleration state

estimates. In equation form

6 = 1 (Aa )At 2  (159)

is solved for Aa8 and the sign of [HT(-h)] incorporated

to give

Aa = sgn{[HT(r-h)] }  (160)

At 2

where 16,1 is estimated using equation (158). Assuming the

maneuver was detected at ti, the incremental changes in

acceleration (Aaa, Aa8) are added to the acceleration state

estimates and the modified state vector set equal to _(t -1)"

This new state vector is propagated from "(t I ) to ^(t-)

and used as usual.

Incorporating this algorithm into the filter and run-

ning some test cases showed promising results. The filter

would track for several samples beyond the point of loss of

lock in the initial design without the estimated accelera-

tion incorporated. The acceleration obtained from equation

(160) is not sufficiently accurate to allow continued track-

ing without good updates in the next few samples. Also, the

acceleration is not constant in the azimuth, elevation, LOS

coordinate frame. Thus, the updates in the filter must be

accurate and rapid. Table XVIII shows a typical sample

result when the acceleration estimate is computed and

incorporated into the state vector but the gains are left

unchanged. Comparing Table XVIII to Table XVII shows this

improved performance.
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(TABLE XVIII

Elevation Acceleration Estimate Only

Time 6 6 Remarks

3.9 .22 .17
S3.93 .20 .03

3.97 .37 -.02

4.0 .31 -.20 maneuver initiated

4.03 .31 .23

ij 4.07 .55 .18
4.1 .68 .08

4.13 1.69 .00
4.17 2.99 -.37

4.20 4.58 -.87

4.23 6.86 -1.15

To increase the filter gains, the P matrix was redefined

by increasing the variances of the acceleration and velocity

components. For velocity uncertainty the variance was
increased to 100 and for acceleration uncertainty the vari-

ance was increased to 300. For implementation these vari-
ances would be a function of the accuracy of the maneuver
detection algorithm and would be similar to an acquisition

mode. The performance of the filter improved and it was
able to track the image for about .5 seconds. Table XLX

shows the result when the increase in elements of P is added.
This sample corresponds directly to that of Table XVIII

(same samples of noise process used in simulation). The
maneuver detection, Aa computation and P increase function
properly. However, at 4.2 seconds two diagonal elements of

Qthe P matrix become negative and the affected rows and col-
umns were set to zero. This seemed to cause the algorithm

134



TABLE XIX

Elevation Acceleration Estimate and Increased P Matrix

JTime 6 a 6 Remarks

3.90 .22 .16

3.93 .20 .03

3.97 .38 .03

4.00 .31 -.21 Maneuver initiated
4.03 .31 1.59 First x (4.03-) (unmodified)

4.03 -. 46 .2 New x (4.03) (modified) true
acceleration was 2448 pixels/
sec 2 estimated value was

4.07 -1.68 -.34

4.10 -1.87 -.35

4.13 -2.38 -.13

4.17 -2.18 .34

4.20 -1.59 .25 Two elements of P (4.20+) < 0.
Rows and columns set to 0. No
x 4 or x 6 update.

4.23 -1.05 .38

4.27 .15 -.06 Element of P (4.27+) < 0. Row
and column set to 0. No x
update.

4.30 1.29 -.45 The 6. tripped maneuver detector
and was corrected

4.30 .78 -.74 New x (4.30-)

4.33 .32 -1.56

4.37 .57 -1.36

4.40 .17 -1.15

4.43 -.17 -.63

4.47 .09 -.90

4.50 .73 -1.40

4.53 1.49 -1.69

4.57 1.47 -2.33

( 4.60 1.86 -2.99 Filter function h and image no
longer overlap significantly
(lost track)
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to become unstable. Note the increased error in the azimuth* (
direction (acceleration was in the elevation direction).

This occurred because the Aa a was computed from a Is and

j[HT(r-h)]aI with insufficient correlation. Even so, the
filter was recovering from the erroneous Aa until the P

matrix becomes indefinite at 4.2 seconds. This can be

remedied in part by lower bounding the P diagonal terms by a

positive number (.1 for this research). Continued work in

this area is warranted, including the incorporation of FOV

expansion and contraction.

Final Filter Performance

The final filter algorithm included Imax, AR and v

estimation, fixed QFd matrix, and an acquisition scheme all

incorporated into the eight state formulation. Recall in

Chapter IV the desire to use the six state filter vs. the

eight state formulation. Because of the non-inertial accel-

erations the rotating LOS coordinate system presented, the

eight state filter was selected to reduce these effects.

The Fd adaptive estimation proved to be inadequate.

Time constraints prevented a thorough investigation of the

causes for its trouble, but it seemed to create more prob-

lems than it solved. It may be useful for dynamic environ-

ments below maneuver detection threshold, but its perform-

ance benefit would need to be compared to the cost in com-

puter time and potential induced stability problems before

it could be recommended for implementation. So the final

filter uses a OFd high enough to allow acquisition and is

fixed at that value.

Performance of this filter on trajectory 2 (cross range)

is shown in several figures starting with Figure 45. This

figure shows the azimuth mean position error plus or minus

one sigma. Comparing this to Figure 32 shows that the

eight state filter exhibits little evidence of the non-

inertial effects. The maximum mean error is .175 pixels
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(3.5 Prads) and the three sigma value for this point is .84

pixels (16.8 prads). Figure 46 shows the azimuth mean

velocity error to less than .17% of the velocity value.
Generally, acceleration magnitude will be nonzero at hand-
off and there will be a transient before the acceleration

estimate is accurate. This transient is damped out by the

acquisition mode with its higher P elements reflecting the

uncertainty at hand-off.

Figure 47 shows the filter estimate of the azimuth

position standard deviation vs. the actual sample standard
deviation from the simulation. Figure 48 shows the corres-

ponding results for azimuth velocity. Both plots show a

slight overestimation of the variance, but nevertheless good
2performance. The dynamic driving noise strength (aD = 600)

was tuned to this trajectory (2) and the filter should per-

form well. However, limited time prevented an extensive

investigation of suitable noise strengths. A more dynamic

Senvironment would make a higher strength noise appropriate.
If good performance required a well-matched 2Fd then adap-

tive estimation of 2Fd could be used to advantage. Figure
49 through Figure 52, for the elevation direction, are simi-

lar to the plots for azimuth. The same comments given above
are applicable to the elevation direction. Parameter values

for this run are given in Appendix K case 36.

For the highly dynamic environment of trajectory 3

(20g pullup), partial results are given in the preceding

sections of this chapter. The Monte Carlo runs were not
completely successful, so no corresponding plots were made.
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VI. Conclusions and Recommendations

Conclusions

The scope of this study allowed numerous conclusions,

particularly concerning the various filter techniques tested.
Most of the filter techniques, such as adaptive schemes and

state space formulations, which are addressed in these con-

cluding remarks, were formulated in detail in Chapter IV

and analyzed in Chapter V.

The fairly simple techniques developed for the estima-

tion of the maximum target intensity, Imax achieved very

good accuracy. With a true Imax = 25, the estimation pro-

cess averaged 24.99 with a standard deviation of .299. The

adaptive process was specifically tuned to this level of

target intensity, but serious degradation is not anticipated

at other target intensities using this estimation scheme.

And, the small price in computational load is readily afford-

(i able to identify this critical parameter accurately.

Similarly, the simple gradient schemes devised for esti-

mating the size of the target in its longitudinal axis, aVo

and the aspect ratio of the target, AR, were sufficiently

accurate and easily implemented. These estimation schemes

performed so well that further investigations into more

precise approximations to solutions of the full Maximum

Likelihood Equations were not conducted. For a true AR of

5, the estimation scheme averaged 4.07 with a standard
deviation of .16. The large bias between the true and esti-

mated values is well understood, and very accurate target

modelling and state estimation are still achieved as is

discussed in detail in Chapter V. For a true av of 5, the

estimation of av averaged 4.83 with a standard deviation of

.32. Again, the slight bias is understood and causes no

problems in target modelling.

( . The eight state filter is preferred to the six state

filter to provide more accurate tracking of the missile as
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can be seen by comparing Figures 32 through 35 (six state

filter) to Figures 40 and 41 (eight state filter) in Chapter

V. The eight state filter is needed to accommodate the

non-inertial accelerations caused by the rotating FLIR ref-

erence frame as seen in the straight line flight test cases.

Also, the acceleration estimation scheme developed for high

g turns is more easily used in conjunction with the eight

state filter because x and y channel accelerations are two

of its states.

The technique for estimating the dynamic driving

noises, 2FdF was not conclusively determined to be useful.

Much was learned concerning procedures to combat apparent

stability problems that occur when using the QFd estimation

process. Zero lower bounding of P and 2Fd' and upper bound-

ing on RFd were not effective solutions to the instability

of the filter which appeared as negative values on the main

diagonal of P. A brief study of positive lower bounding of

P and RFd demonstrated good potential for solving the sta-

bility problems noted. It was discovered that RFd estimation

was not fast enough for hard maneuvers but it could be used

perhaps for intermediate (medium maneuvers) cases which were

not investigated in Chapter V.

The maneuver detection and acceleration estimation

techniques showed great promise in leading to the ability

to track the missile in high g turns with a very limited

field of view. The maneuver detection technique is based

on large changes in the scalar AxT Ax, where Ax equals the

gain, K, times the residuals, or on large changes in H T[-h]

(note K = P+ HT R- 1 and R = R I here). These techniques

successfully detected all the maneuvers tested which were

extreme. The acceleration estimate which was based on the

linearized measurement matrix multiplied by the residuals,

HT(r-h) proved capable of identifying the acceleration of
a high g turn to within five percent of its true value in

one sample period. Immediately after maneuver detection

two actions were taken: P+ was increased which immediately
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increased the gain (K = P+HTR-); and an acceleration esti-

Cmate, as described above and in Chapter V, was incorporated
into the filter. These procedures were effective for about
half a second, but the filter then lost track of the tar-
get. The loss of track was not directly attributable to
the initial actions taken, but was caused by the filter's

inability to keep the gains high enough throughout the turn.

A procedure, which was not evaluated but could be effective

in tracking missiles in g turns, would additionally expand
the field of view of the filter by summing up pixel values
to represent a single measurement, and is described in the

recommendations section to follow.

Finally, in the high levels of S/N (10 or greater)
studied, the spatial and temporal correlations of the back-
ground noise were not found to be significant in their

effects on the filters performance, as was shown in Chapter
III. They were found to have a significant impact at S/N

c equal to two or lower. The combination of spatially corre-
lated noise and temporally correlated noise was found to

have more effect than each one taken separately as can be
seen in the cases presented in Chapter III.

Recommendations

Many areas needing more extensive study were bypassed
in an effort to progress the general design of an effective

filter as far as possible. Hopefully, this study has solved

some problems and provided useful insights towards a final

adaptive extended Kalman filter. Future research on this
problem can go in many directions.

More study needs to go towards testing the final filter
design to determine more completely its capabilities and to

see if it can track a turning missile with minor modifica-

tions. In particular, investigations of target scenarios

between the straight missile flight path and the 20 g turn
are needed. Also, the maneuver detection and acceleration

estimation schemes will require more study.
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Some major modifications could include (but are not

limited to) alternate reference frames for problem formula-

tion, alternate target acceleration models, enlarging the

field of view (dynamic pixel compression schemes), and dual
parallel filters (a form of multiple model filtering, Ref 8:

10-103 to 10-106). Alternate reference frames could possi-
bly lead to more accurate or more efficient filter formula-

tions. For example, a vehicle fixed reference frame filter

formulation could provide better filter performance during

high g missile maneuvers. Alternate models for target
acceleration, such as constant turn rate model or first

order Markov process, could enhance filter performance as
compared to the present model which represents acceleration

as Brownian motion. The idea of enlarging the field of view

is motivated by the need to keep a maneuvering target in the

field of view considered by the filter. One such scheme

would sum up 2-by-2 or 4-by-4 arrays of pixels into one

measurement to allow an expansion of the field of view

without changing the size of the measurement array in the

filter. The dual filters idea may be most useful. One

filter, such as designed here, could be used to track linear
missile trajectories, and the other filter with high gains.,

possibly constant, would track the high g missile turns.

Switching between filters could be provided by a maneuver
detection scheme as studied in this research.

Another study could concentrate on the estimation tech-
nique for QFd in order to analyze and solve the stability

problems noted in this research. The positive lower bound-

ing of QFd and P would be good starting points for such a

study, but a greater variety of target scenarios should be
investigated to establish more universal lower bounds for

the diagonal terms of each matrix. Further research into

QFd estimation techniques should address its role in target
acquisition strategies, and a tradeoff study should be con-

Cducted to determine whether performance benefits warrant the
additional complexity of the adaptation.
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C ofsAn idea which may merit investigation is the modelling

of some targets by two or more related elliptical contour

intensity distributions. Targets such as aircraft, may
appear to be composed of more than one major source of

infrared (IR) radiation when viewed by an IR sensor. For

example, aircraft nose, wingtips, engines and engine

exhaust are all possible sources of high IR radiation.

More effective tracking scheme3 could possibly be formulated

I .I with multipld intensity patterns which maintain a consistent
geometrical relationship to each other.

A more long range research topic could focus on an

efficient on line implementation form of proposed filters,

such as square root filter forms or U-D factorization forms
(Ref 15: Chapter 7). The sample rate for any effective

tracking system, such as the 30 Hz rate currently used,

will have to be relatively fast. This will require extreme
efficiency and accuracy of the on line formulation used, and

optimization of the algorithm in this regard should be

undertaken.

The very specialized problem of tracking at low S/N

will eventually need to be confronted. As shown in the
present research, a part of such future study should include

the spatial and temporal nature of the background noise.
Thus, part of the study would entail more extensive real

data analysis to evaluate the temporal and spatial correla-

tions involved more precisely and to formulate new models

as needed. This possibly could be accomplished by incorpor-

ating the temporal and/or spatial noise concepts into the

filter, and, then, evaluate filter performance against a

realistic, more complex truth model such as stored test data.

Future filter designs to incorporate range and/or range

rate data may provide the best approach to the missile track-
ing problem. Such measurements would allow direct computa-

(K tion of compensation terms for non-inertial acceleration

effects, and would enhance estimation of range-dependent
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parameters to describe target size effects and maneuver

rate capabilities. The price of the extra sensors needed
for the range and range rate data could easily be outweighed

by the accuracy and simplification gained.

The ultimate goal would be the formulation of a sub-

optimal closed loop controller design. Incorporating both

laser system and tracking system dynamics into a near opti-

mal feedback system (as via forced separation design, sepa-

rating the generation of deterministic controllers and

estimators, and then combining them) would be a very complex

problem requiring knowledge in several specialized areas

such as optics, optics control, estimation theory, control
theory, etc. This would be a very demanding task, directly

exploiting the tracking filter designed in this research

and extended as discussed above.

Computer Support

The pace and extent of this research effort was signif-

icantly retarded by the computer support available at AFIT.

An estimated 30 percent more work could have been accomp-
lished with a more reliable and responsive system. The

authors encourage any steps to make AFIT's computer support

better. Possible recommendations include more hardware

support (i.e. it is unbelievable that AFIT has only one

plotter), more personnel support, and AFIT's own dedicated

computer.
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